Freescale KQRUG
Users Guide Rev. 2, 08/2012

Kinetis Peripheral Module
Quick Reference

A Compilation of Demonstration Software for Kinetis Modules

This collection of code examples, useful tips, and quick
reference material has been created to help you speed the
development of your applications. Most chapters in this
document contain examples that can be modified to work
with Kinetis MCU Family members. When you are
developing your application, consult your device data
sheet and reference manual for part-specific information,
such as which features are supported on your device.

Sample code can be found at KINETIS512 SC.zip,
available from http://freescale.com

Information about the ARM core can be found in the help
center at http://ARM.com

The most up-to-date revisions of our documents are on

the Web. Your printed copy may be an earlier revision.

To verify that you have the latest information available,
refer to http://freescale.com

L A

C o
© Freescale 2012. All rights reserved. ’d .
9 > freescale

Revision History

Revision e Page
Date Level Description Number(s)
11/2010 0 Initial release N/A

* Added two new chapters, Chapter 8: Using the Flash Software
Drivers, and Chapter 20: Using OPAMP for Kinetis
Microcontrollers.

» Updated Fig. 13-3, Fig. 13-4 and Fig. 13-5 of Chapter 13: ENET
Module. Also updated Section 13.5.1.1: Hardware Implementation,

03/2012 1 of the same chapter. N/A

* Added a note to Section 14.4: Example Code, of Chapter 14: USB
Device Charger Detection (USBDCD) Module, and Section 15.7:
Example Code, of Chapter 15: Universal Serial Bus OTG
(USBOTG) Module.

* Deleted the sentence “Refer to the full source code for this example
in the ZIP file” from the Section 7.1.5.2: Module configuration, of
Chapter 7: Enhanced Direct Memory Access (€DMA) Controller

* Minor editorial changes

08/2012 2 N/A

Kinetis Peripheral Module Quick Reference, Rev. 2

2 Freescale Semiconductor

Contents
Section number Title Page
Chapter 1
General System Setup (Software Considerations)
L1 SOftware CONSIAEIATIONS.couieuiiuieiieiieiieiieiteit ettt ettt ettt ettt besa e a b sae e be e 15
LLT OVEIVIBW .ttt et et s b e s b b e b b sa e b sb e s et a e sa et besaeebesae e 15
| B 014 [(11 1 o) 1 FO OO URRSRTRRRR 15
1.1.3 ReSCE ANA DOOTINE. c..ceuiiiiiieniiiiieteete ettt ettt et e bt bt et s bt et eb s e bt et e ebt et eb b e sbe et e ebeebeenee 15
11301 DEViICe StAtE QUITIEZ TESEL...eeurietrertiertieeiieestteeiee st e ete ettt e sbtesabeesabee sttt e baeeabeesabeesateebbeebeesabeesaseenseeas 16
1.1.3.2 DEVICE StAE AftEI TESEL......eeeuietieutieiteetieitiete et sttt ettt st e bt et e aeesee e beeateeaeesae e beeneeeseesbeenteenseeseeseans 16
1.1.4 Typical System INItTALIZAIONoo.eeruiiiiriiiiiiieeiteett ettt ettt et sb et st bt e nbeeatesaeesaeeneeeaee 16
1.1.4.1 Lowest level assembLy TOULNES.ccc.eeiiiiriiieiiieeiee ittt ettt sttt s ebee e bteebeeebneeaee s 16
1.1.4.1.1 Initialize general PUrPOSE TEZISTETS.ccueeueeruerrereeeeeeteeeteeeteenteenteeseeteeeeeneeeneeeseesneenneas 16
1.1.4.1.1.1 Unmask interrupts at ARM COTEcc.cocueruiriininiiniiiiineeienteneseeeeeene 17
1.1.4.1.1.2 Branch to start of C initialization code.............cccceceeiriiiiiiiiiiininiiniinennn. 17
1.1.4.2 STATTUD TOULIMES.tieutieeiieeietieteette et e it et eete et e e bt enteesee st e e sbeebeeaeesseesseenbeemeesaeenseenteeaeeeseeseenseeneeeneenseans 17
1.1.4.2.1 Disable WatChAOZ.....c..cocuiriiiiiiiiiiiiiieiteteet ettt et st 17
1.1.42.2 Initialize RAM. ..ottt 17
1.1.4.2.3 Enable POrt CLOCKS.ooiiiieiieietiee ettt sttt 18
1.1.4.2.4 Ramp system clock to selected freqUENCY.........covvriiriiniinienieieecceceeeeeeeeee e 18
1.1.4.2.5 EnNable Pin iNLEITUPL.....eertieiieiieeiieiit ettt ettt et ettt e st e bt e bt e ebeesateebeesanesnneenas 18
1.1.42.6 Enable UART for terminal COMMUNICALION.cerveruierteeientieieeeieieeicenee e see e eneas 18
1.1.4.2.7 Jump to start of main function for application...........c..cecueveererienieencniicneencnieeeceen 19
Chapter 2
General System Setup (Hardware Considerations)
2.1 Hardware CONSIAETALIONS.c.euiiiieiiiiieiieiietiet ettt ettt et sttt et et at e bt eae e b e b saeebesaesnens 21
2101 OVEIVIEW .ttt et et e s b bbb s b bbb e b e s ea e st 21
2 B2) (a0 4 o) F: s OSSR 21
2 1201 COMMECLOTS. ...ttt ettt et sttt et ettt s et b e ea et ettt b e sa e b et ebe et et snen et e 22
2.1.2.2 POWET dOMAINS. ..ottt et et s s s s 22

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 3

Section number Title Page
2.1.3 PCB routing CONSIAETALIONS.veerureeitieeiieeriteeeiteesteeeiteesbeesteesabee sttt e sabeesateesabeesuseesabeesaseesabeessseessseanaseessneensseenns 23
2.1.3.1 POWET SUPPLY TOULINE...ecuteeutitietietiete et sttt et ettt e et ettt e st e bt et eeae e st e e bt et e eseesbeebeenaeemeeseeenaeeneeeaee 23
2.1.3.2 Power supply decoupling and filtering...........ccoeererriiiiiniiniinieiieeecee et 24
2.1.3.3 OSCHIALOTLS. ...t 25
2.1.3.3.1 RTC OSCILALOT. ...ttt ettt ettt sttt et st e b e saeeaeeaeas 26
2.1.3.3.2 MOCG 0SCIHIALOT. ...c.ueiiiiiiiiiiititee e e 26
2.1.3.4 GeNETAl fIIEETINE .. veeiitieiieiiie ettt ettt ettt et sab e st e e s it e e s bt e e bt esabeeeabeesateesaneeaeen 29
2.1.3.4.1 RESET b and NMILD...c.cooiiiiniiiieiiieeee ettt 29
2.1.3.42 General purpose I/O.......coiiiiiiiiiiiitet e 30
2.1.3.4.3 ANALOZ INPULS....eiiiiiiiiiiiteite ettt ettt et e e st e st e e s bt e ebee s bt e sabe e beesbeesabeenas 30
2,14 PCB LAYOT STACK-TP. ¢ ittt ettt ettt ettt e et et e s bt et e s bt e e e e bt en b e e bt et e eseenbeese et e eneenbeeneeneeeneas 30
2.1.5 Other module hardware CONSIAETALIONS.cctiuiruiriiriirieieieiee ettt ettt e 33
2151 VBAT ettt 33
2.1.5.2 Voltage reference MOAUIE............coouiiiiiiiiiiiieie ettt ettt sbe et eeee b e e enes 34
2.1.5.3 DEbUZ INLETTACE. ...c.veeuteriteiieieiteittet ettt sttt sttt sttt eat e bt ettt e b e e eae 34
Chapter 3
Nested Vector Interrupt Controller (NVIC)
31 NVIC ettt h bbbt b et b et bbbt bbb e 37
3Ll OVEIVIBW ..ottt e s sh bbb e 37
70 I I O 65 o1 10 (e o) s OO 37
3112 FRALUIES ...ttt sttt et ettt ettt 37
3.1.2 Configuration @XAMPIES.......cccuetiiiiriieriiieiieette ettt et et ebe e et e st e e sate e beeebeese bt e sabeenbteebtesabeesabeessseenbseenseenates 38
3.1.2.1 Configuring the NVIC.......oouiiiiiie ettt ettt ettt ettt et eseesseesbee bt enbeeneeeaes 38
3.1.2.1.1 Code example and eXplanation............ccoceererriiriirieneenieeieeeeeieeie et 38
3.1.2.2 Relocating the VECLOT tADIE........coiiiiiiiiiiiiie ettt ettt et st e st et e eaeesaee s 39
3.1.2.2.1 Code example and eXplanation............eoeerueeriiriierienieite ettt 40
3.1.2.3 DiSADIING PIIOTITIES. ¢e..eeuteeutiieeiierieete ettt ettt sttt sttt ettt e b et b e et e bt e bt ebte bt eatesbeenteebeenaeeaee 40
3.1.2.3.1 Code example and eXplanation..........c.eevueerieeriieriiieiiieeiee sttt e e e eeee s 41

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

4 Freescale Semiconductor, Inc.

Section number Title Page
Chapter 4
Clocking System
1 CIOCKINE. c.tinteiteteeiteett ettt ettt ettt et b et e h et ea et e bt et e sh e e sbeeat e s bt et e s bt e bt e et e eb e et e e bt e bt e et e s bt e bt e ba e b e eiaenbeens 43
10T OVEIVIEW ..ttt b bbb e e b e e b e b 43
AT.2 FRALUTES. ..cueeiiiieiie ettt ettt ettt ettt et e e a e e bt et eea bt e sb bt e bt e e bt e e ab e e bt e e bt e ettt sab e e ehte e bt e e bt e saneeeabeebae s 43
4.1.3 CONIGUIAtION EXAMPIES. ..c.uveuiitiriiiiiientieteete ettt ettt ettt a ettt sat e bt et eb e e eb e et e et e ebe e bt esbeeatesbe et e eabeebaenbeens 45
4.1.3.1 Transitioning to PLL engaged external MOde...........cccueiruiiriiieniienieeiie ittt s 46
4.1.3.1.1 Code example and eXplanation.............ccecueeueriertienieesieeienieee et eee sttt seee e 46
4.1.3.2 Transitioning between PLL engaged external mode and bypassed low power internal mode.......... 47
4.1.3.2.1 Code example and eXplanation.............c.eeeeeerieriiieiniieeiie sttt eaee s 47
4.1.3.3 Configuring the FLL with the RTC oscillator as a reference.............ceeceevierierienie e 48
4.1.3.3.1 Code example and eXplanation...........c.ccecueeierieniieriirienienieeeete et 48
4.1.4 Clocking system device hardware implemMentation.co.veerueiiiiieiniieniieeiee ettt et e eiee e e saeeesbeesaree s 49
4.1.5 Layout guidelines for general routing and placement.........c.coveiiriiiiieriieie e 50
4100 RETEIENCES. ...ttt a et s a e et sa e sa e sa s 50
Chapter 5
Power Management Controller (PMC/MODECTL)
5.1 Using the power management CONIIOLIETcc.uiruiiiiiiiriieieeit ettt ettt ettt e st sae e et s esaee e 51
S.LL OVEIVIBW .ttt et et s e a e e bbb e b sa e bbb s 51
T8 I I O 655 o1 10 (e 1o s OO TRRPRPSRPR 51
5.1.2 Using the 10w voltage deteCtion SYSTEIML.......covirtiiierierieriienieiie sttt ettt sttt ettt et ebe ettt etesbee e ene 51
S.L20T FRALUIES....cviiiiiiiiiiciicc et 51
5.1.2.2 Configuration @XAMPLES........cc.eeruieiiiiertieii et etiest ettt et e bt ete et e bt ebeetesaeesbeenaeeneessee st eneesaeesaeeneeenes 52
5.1.2.3 Interrupt code example and eXplanation...........cccceeereerieniriiinieneeneeie ettt 53
5.1.2.4 Hardware implemMeEntation.cc.eeeiueeriiiriieetienteeetteeite et et e et eesiteesbbeebeesabeesaaeesbeesabeessseenbeesnseenaeean 53
5.2 USING the MOAE CONIIOIIET.ouiiiiiiietieiiete ettt ettt ettt et e sttt e et e et e bt e et e sbe e st e e bt esee b e enseebeenseeseenseeneeeeenee 54
5201 OVEIVIEW .ttt st st b e s a et s h et b e et be et b e sa et b e sa et e b b st 54
S2. LT INEOAUCTION. ...ttt st e s s 54
5.2.1.2 FRALUIES. ...ttt ettt ettt ettt e e e bt et e e e e bt et e e aee e bt e bt e meese e e bt et e ea e e bt e bt eneeeae e bt enteeaeenneenes 55

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc.

Section number Title Page
5.2.2 CoONfiguration EXAMPIES.eeiuriirieritieiiteett et ettt ettt te st esabe ettt e beesabeesabeesateesbee e stesabeesabeessteesbbeenbeesbeenaseenns 55
5.2.2.1 MC code example and eXPlanation...........cceecuereererrierienieeie et eteste st eseeeee st eeeeneeseeeaeeneesaeeneeenes 56
5.2.2.2 Entering low leakage stop (LLS) MOdE.......cceevuiiriiiiiiiiiiinieieeee et 56
5.2.2.3 ENtering Wall TNOGC.cc.eeiuiiiiieriiieeiteeite et eite st eat ettt et e et e e bt e sateesabeesateesbbeesbeesabeesabeesnteesaneenseean 57
5.2.2.4 EXiting [OW POWET TNOUES. ... cueeeuiiiietietieteete et eeeestce st et eteeeteseesatesate bt e bt enteenteeseesseesbeeseeseeneeenes 57
5.3 Using the 1ow 1eakage WaKE@UP UNIt........coueriiiiiiiiiiiiieieeiieie ettt ettt ettt ettt st et eae et bt e bt et sbeesbee e eaee 58
5301 OVEIVIEW .ottt et s a e e e bbb s b e s b bbb st 58
53,11 MOAE IIANSIEIONS ..uveteentieiieteeiteetieteeiteste e e et eteea e e bt eatesbeeabesbeebeesse b e esteeseenseeseeseeneenseenseeseenseeneenseenes 58
5.3.1.2 WAKEUP SOUICTES ..covveviiniieniieitieitenitett ettt et ste ettt st bt et e bt eat e sh e e bt et e bt ebsesb e e bt enbeeatesbeenbeenaeenaeeaee 58
5.3.2 CoONfigUuration EXAMIPIES.eirriirieritieitteette st ettt et et te st e sttt ettt e bteeabeesabeesateesbeeestesabeeeabeessbeessbesnbeesbeenaseenns 58
5.3.2.1 MOQUIE WAKEUP.euieiieiieit ettt ettt ettt et a et e st et e e e ae e bt et e e st et e ent e bt et e eaeeneeenes 58
5.3.2.2 PN WAKEUP. ctt ettt ettt ettt ettt h ettt b et ebe bt et ebe e e 59
5.3.2.3 LLWU port and MOAUIE INLETTUPLS.eeruriritieriieriieiieeitiesiteeite sttt ettesite et e siteesieesiteesbeeseesnbeesbesneenes 59
5.3.2.4 WQAKEUP SEQUEIICE.eeueieuieieeiieetteie ettt e e stt et et e e bt eete bt e etesb e e bees e et e esse bt anbeeseenseeneenseenseeseenseeneenaeenes 60
5.4 Module operation in IOW POWET MOAES........c..eeriiriiriiiiiriieriteit ettt ettt sttt et at et b e e bt e bt ssaesbeesbeeneeenaeeaee 61
5.5 MoOde tranSition TEQUITEIMEIIES.eeuterrierteeriteertteeteesteeeteestteesuteeteesabeesateesaseesseesabeessseesaseessseabeeenbaesaseesabeenaseebaeenseesnses 62
5.6 Source of wakeup, Pins and MOUIES........cc.eeuirieiiiiee ettt ettt ettt e et e st et esbeesee b e enbesbe et e ebeenteeseenaeenee 64

Chapter 6
Memory Protection Unit (MPU)
6.1 Using the memory protection UNit MOGULE.cecuirtiiieitiiieeie ettt ettt ettt et et et e ebeesbe e beenaesaeesseeneeeneeenes 65
6.1.1 OVEIVIEW ..ottt et st et s a et b e et b s bbb sb et besa et besa et besa et eaesaea 65
6.1.2 INErOAUCTION.c.eiiiiiiiiiiiic et st s s sb e s sb e s sa e 65
0.1.3 FRATUIES ..ottt ettt et e h ettt e a e e bt et e e et e bt e a et ea e e eb e e et e et e eh e e a et eateeh e e aeeaeeehe e bt eaeeeae e bt et e eneeneenes 65
6.1.4 Configuration EXAMPLES.c..ceouietiriiriietieit ettt ettt ettt et et b e et sb b e sb e e bt ebte bt e bt et sae e bt et bt e b e b enes 66
6.1.4.1 ReZION AESCIIPLOTS SELUD.ttiitiietititieettestee et ettt e rite et e ebeesabeesabee sttt esbbeesseeebbeenbeesabeesaseessseesaneenseean 66
Kinetis Quick Reference User Guide, Rev. 2, 08/2012
6 Freescale Semiconductor, Inc.

Section number Title Page
Chapter 7
Enhanced Direct Memory Access (eDMA) Controller

To1 DA et h et h e et h e e ae bbbt h e h et e h et b et b et 67
ToLL OVEIVIEW ..ttt et e et e b b e b b sa b b e sa e eb e b saeeb e b s ea e 67
7% 0 O O (i (o L1 17 (o) & PO PSPPSR 67
To1.2 @A HIZEOT ettt ettt et ettt b et a bttt e h bt a e bttt e h bbbt eh et eheenh et e b e aeenee 69
T 121 DMA MU PIEXET..ceetiiniieiiieiieee ettt ettt ettt et e st e sbb e e bt esabeesabeenbeesnbeenanean 69
T 122 TIIEET TNOAC. ...ttt ettt ettt ettt ettt s a e bt et e s h e et e s st e bt emtesbeenbeentesbeenteeneenbeeneenneans 70
7.1.2.3 Multiple transfer TEQUESES.c..eitiririerieriieteeit ettt ettt sttt st et e bbbttt eate e eaee 71
7.1.3 Transfer process—major and Minor transSfer LOOP.........ievieiriiiiiiiiiie et 72
714 CONTIGUIALION STEPS ...eeuvieuteiuieitieteeteette st et eteetteste et e ette et e e st enbeeaeeebeenbeeaseesee bt enbeemseeseebeensesmeesneebeeneesneesseenseenes 73
7.1.5 Example—PIT-gated DIMA TEQUESLS ...ccueeutirtiiiirtiniieieeteeitent et ettt et ete sttt ettt st ste et b e saeeneeeneesaeeaeenee 73
T1.5.1 REQUITEIMEIILS. c...vieiiieiiieeeiteesiteeeite ettt ettt et e ebteebeeeabeesbteeateesabeesabeesabeesabeesabeesabeessbeenateensseensteennaeeseean 73
7.1.5.2 MoOdUle CONTIGUIALION.ccueiitieiiitieiieiiet ettt ettt ettt et ettt st te e st e bt et e sbeentesbeenbeeneenbeennesneens 74

Chapter 8

Using the Flash Standard Software Drivers

T B @) 4 1) OO 77
8.2 Downloading flash SOftWAIe AIIVETS.......ceoueiiiiiiiiiieiieeee ettt ettt ettt et sttt e e b e 77
8.3 FRATUIES. ...ttt bbb e b e s 78
8.4 CONTIGUIAtION PATAIMICIETS. ...c..evieutieuietieuteeteeteeteeteeeterteeste bt estesteesteebeente et e enee et e eneeesee st emeesbeemeesaeemseabeenseeseenseeseenseeneenseenee 78
8.4.1 SSD CONTIGUIAtION STIUCTUIE.ccuviettentieiieteeteetteete ettt ettt ettt et e e st e sbeetesbtesaeeatesbeenaeestesbeentesbeenbeentesbeensesaees 78
842 SSD dEIIVALIVE. ...cuiiiiiiiiiiiiciit e e e 79
8.5 DDIEIMO COME.... ittt ettt ettt ettt ettt et e a et e et e a et e e et ea e e sh e emeeem e e es e e et eae e e et e bt eaeeea e e et eaeeen e e st enteeneeeatenbeeneeeneeaeenes 79
8.6 AddItIONAl TESOUICTES.....c..itiiiitiitiiiiitieii ettt sttt ettt et et ettt e s e b sb e sa e b ea e ea e bt et ebs et e e e s e e et e besaeanes 82

Chapter 9

Using the FlexMemory

9.1 USING the FIEXINVIM ..ottt ettt bt et b et s h et h et bt e bt e bt e s bt es s e bt eabesb e et e ebe et e ebeeaeeaee 83
O 1.1 OVEIVIEW ..ttt ettt et et et b e s b b e b b st e b e b s a e b s ea e 83
L2 O 65 o1 10 (e o) s OO 83
0. 1,12 FRALUIES. ...ttt sttt ettt ettt ettt 83

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 7

Section number Title Page
9.1.2 Configuration EXAMPIEScccviiriiritieiiieeiterte ettt e et et e s bt e bt e e beeeabeesabeesaeeesbbe e btesabeesabeessteesssesaseesbeenaseens 84
0.1.2.1 Basic data flash.........ccoooiiiiiie et 84
9.1.2.1.1 Code example and eXplanation.............cecueriereireriinieneenieeteeeesieeie et 84
9.1.2.2 EEPROM flash rECOIAS.........ccoiiiiiiiiiiiiiiiiiiiciicc e 84
9.1.2.2.1 Code Example and EXpPlanation............cccceieererininenineneniiseneseeresie s 85
0.1.2.3 COMDINATION.ouiiiiiiieiieiieiieeie ettt ettt et ettt s ea e e b sae b besaeen e 85
9.1.2.3.1 Code example and eXplanation...........c.ceevueeriierieenieenieeie ettt eieesbeesbee b e see e 86
9.1.3 EDAUTANCE. ...ttt ettt ettt e a et et et e e st e eb e e st e bt em e e e bt em b e ebeen s e ebeenbeeseenbees e et e eneeabeeneenneeneas 86
Chapter 10
EzPort Module
10.1 Using the EZPOIt MOUIEccoociiiiiiiiiiiiienieee ettt st sttt sttt ettt sae e b e 89
LO.T.T OVEIVIEW . ..cuiniiiiieteteet ettt st s a et sa et b e sa et be s a e b b sa et e b saeenesuesaeas 89
JO.1.1.1 INEFOQUCTION ..ottt s e s sa e s sa e s 89
TOUL.1.2 0 FEALULES ..ttt ettt st et e bbb e st e e bt e e be e e ab e e sabeeeateebbeebeesateesaneenneeen 89
10.1.1.3 Command deSCIIPLION.co.uiriirtieiieiteeitete ettt ettt ettt ettt et e et sbtesbeenteeatesbeesbee bt eateenaesbeenbeens 90
10.1.1.3.1 Command fOrmat...........ccoccuiiiiiiiiiiiiiiiiiiie e 90
10.1.1.3.2 Command tIMINE......cc.eouerueruiririeieetee sttt ettt sttt sttt ese et st saeeae e e naennes 91
TO. 114 STATUS TEZISTOT..uveeuteiteteiiteitt ettt ettt ettt ettt e b et s bt e bt eat e s be e bt ebaesb e et e ebbesbe et e ebsenbeenbeebaenbeens 92
10.1.2 Configuration EXAMPIEScccueeiriieriieiiterie ettt ettt ettt et e e bt e sabeessbeestte e beeasbeesabeesaseensbeesbaeenbeesseesnseenns 92
10.1.2.1 HardwWare COMMECLIONS.cecuteutertteteetierteetesteenteetesteeteseeesseetesseenseeasesseenseeseeaseensesssenseansesseenbeeneenseans 92
10.1.2.2 Write enable and diSable............cccoiiiiiiiiiiiiiiiiiiiiee e 94
10.1.2.3 Sector erase and PrOZTAIM........ceeuutetieeieeriiteriteeteesteesieeebteeteeseteestaeeabeesabeesseeebeesaseessseesseesabeesseenseeas 94
10.1.2.4 Write and read FCCOB TEZISTETS......cc.veiiiiriiriiniiniieiieteiietetete sttt sttt et sttt et ne e 95
10.1.2.5 Write and read FIEXRAM........cccoiiiiiiiiiiiiiiiecceeeee e 96
Chapter 11
Flexbus Module
11.1 Using the FIeXbus MOAUIEc.cooiiiiiiiiiiiieeiet ettt ettt bttt st st be et et st esbe e e eae 97
L1101 OVEIVIBW .ttt s st s et et s eaeeae s 97
OO0 P 0 B €Y 0T L 17 (o)3 OO U SRR URUPR PSPPI 97

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc.

Section number Title Page
T1.1.1.20 FEALULES .ottt st s 97
11.1.1.2.1 Signal deSCIIPLIONS. ...c.veevirteriirtieiertieteeeeteete ettt ettt ettt ettt st 97
11.1.1.2.2 Address and data bus MUltipleXingc..ceceeveerierieriinienienieeieereseeie ettt saees 98
11.1.1.2.3 MOdes Of OPEIAtION. ...cc.ueereiiriiieriiieriiteeieeeitt ettt et e st e st eeibeesibeesibeesibeesabeesaneesaseens 99
L1.1.1.2:4 BUISE CYCIES. .ttt ettt ettt ettt sttt e st e bt eatesbeebeeneesaeeneeeneas 100
11.1.1.2.5 Data Byte Alignment and Physical COnnectionsc..cceeeveenuerienieneeneenienieneennen 100
T1.1.1.2.6 MEIMOTY IMAP...c..eteitieniieiiteeriteetteetee ettt ebe e et e sate e bt e esbeesabeesateeabeesabeessbeebaesnseensseenseesnseenas 101
T1.1.1.2.7 ReferenCe ClOCK.ccuiiiiiiiiiieiieieieee ettt ettt et et sae e enean 101
11.1.1.3 Configuration EXAMPIEScc.eeteriiriiiriieierterit ettt ettt ettt sbe et eateebee bt et e eaaesbeenbeens 102
11.1.1.3.1 Code example and eXPplanation...........c.eeeveerreerieenieenieesiieeriteeieeeieesbeesreesreesbeesireenas 102
11.1.1.4 Hardware implementatiOn.cceeuerierueeteiteeteeie st eteette st etesteeteeaaesbeesseeseesbeenseeseeseensesseenseeneenseans 103
11.1.2 PCB design reCOMMENAATIONS.cc..eeuterttertteieriienitenteete et ettt ettt ett et esteeitesbeesbeebeeabesbtesbee bt estesseesbeenseeneenane 104
TTL2.1 Layout GUIAEIINES. ..c..eeeeieiiieiieeite sttt ettt ettt ettt st e ettt et e s it e e bt e eabeesabeesaneeabeesabeenaeean 104
Chapter 12
Universal Asynchronous Receiver and Transmitter (UART) Module
L2.1 OVEIVIBW....iiiiiiiiiici ettt et ae e e h e a e b a e a b s s n e e 105
12,2 FRALUIES. ...ttt ettt ettt ettt et et e bt e et e e bt em bt eh et e em e e e s e embeee s e bt em b e es e et e em e e e s e em bt en e e bt en bt es e et e enteen e e bt enteehe et e eneeneenes 105
12.3 CONIGUIAtION EXAMIPIE.eeutiritiiieiietieitente ettt sttt ettt ettt et ettt ettt eat e s bt ea et sbeemtesbe e bt s bt e b e sbt et e sbe et e eatenbeeseenaeenee 106
12.3.1 UART initialiZation @XAMPIE........c.eeviuiiriiiiiiiiiieiiee ettt ettt sttt ettt et e st e st e e sateebeesabeesateessbeebeesbeesaseens 106
12.3.2 UART I€CEIVE CXAMPIE.eeuiitieiiietieit ettt ettt ettt ettt ettt et e e e bt et e e st e bt es b e beenteese et e este st enseeseenbeeneenseenes 107
12.3.3 UART transmit @XAMPIE........cccueriiriiiiiirieniieiieteeiteett ettt ettt ettt ettt sbe e bt et sbeenbeentesaeesaeeneeenee 108
12.3.4 UART configuration for interrupts Or DIMA TEQUESES.......eieriieriieiiiieeiiteriee sttt siee et e b e sbeesaee e 108
12.4 UART RS-232 hardware implementation.cc.ccueririirerieieieietentenie sttt ettt sttt et et eaetesae st ebe e as e ennenne 109
Chapter 13
ENET Module
L1301 O VRIVIBW . ..ttt ettt ettt ettt et e e et e st et e et e et e eb e emeesa e e st ea e e bt e a e e ee e eaeeeh e embeee e e bt em s e bt embeebeem b e eseenseenseebeenbeene et e eneenneenes 111
13,101 INEEOAUCHION.eiitiiiicietcte ettt st st st b e bbb s a et besa et besaeebesnesaeas 111
I3.1.2 FRATUTES. ...ttt b e e bbb e a e et a e a e s 112

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 9

Section number Title Page
13.2 CONigUIAtiON EXAMPIES. ...cc.uiiiuiiiiieiiieeieeitte ettt ettt sttt et e bt e sttt e bt e e bt e sab e e aeesabeesabeessteeabeeeabeessseenbbeenseessseanseenabes 113
13.2.1 Basic MAC-ENET initialization for a generic TCP/IP Stack...........cccoeiuieiiiiiiinienieieieesiesee e 113
13.2.1.1 Code example and eXPlanation...........cocereereereeiiriinieneeie ettt ettt sie et et et sbeesaeebeens 113

13.3 PHY Management INEEITACE......c..ueiruitiiieiiieiiieeiite ettt ettt ettt sttt e bttt e st esabe e bt e e beeesbeesabeesateeabeesnbeesabeensbeanseesases 118
13.3.1 Code example and eXPIANATION.ccueitiertiiie ettt ettt ettt et e st et eaee et e e beenbeeabeeseesseeabeenbeeneesneenseeneeenes 118

13.4 MILINOME.......iiiiiiiiiiiiieiieet ettt e e h et b et et ettt a e b b s e eb e bt e bt ettt e st sae e b e 120
13.4.1 Code example and eXPIANALION.eevtiiiiiiiiierte ettt ettt e st e st e st e e sbbeesate e beesbeesabeesbeesabeesabeesaseenns 120
13.4.1.1 Hardware implemMeEntatiOn.cceeuerierteeiesteeieete st erteeetesteetesteenteeaeesbeesaeeseesbeensesseenseensesseenbeeneenseans 120

13.5 RMILIOMAE. ..ottt ettt ettt ettt e b et et ea e b e bt eae b e b sa e b b saeene b e 121
13.5.1 Code example and eXPIANALION.certiiriieriieie ettt ettt ee st e et et e st e ettt esabeebeesbeesabeesbeesabeesabeenaseenns 121
13.5.1.1 Hardware implemMeEnTatiOn.cceeruereerueeierteeteeeesteeteeete st etesteenteeetesbeeseeseesbeenseeseenbeensesseenbeeneenseans 122

13.6 PCB Design ReCOMMENAALIONS.ccuiitiiiiriietiiieitieteeitent ettt ettt ettt ettt ettt et bttt e bt eb e et e eatesbe e bt sbtesbe et e ebeeaeenee 123
13.6.1 Layout GUIAELIINES.ccuvieriiiiiiieiieitte ettt ettt ettt ettt ettt e bt e et e e s ab e e s abeeabeeeabeeeabeesbbeenbtesabeesnbeebteenseesaseens 123
13.6.1.1 General Routing and PLACEMENL...........cccuiiieriiiiiiieie ettt ettt seeens 123

Chapter 14
USB Device Charger Detection (USBDCD) Module

LT O VEIVIBW . ..enteiiente ettt ettt ettt et et e et e et e et et e et e st e bt ea e e eaeem bt eae e bt e mteee e emeeeh e embeee e e bt em e e bt embe e b e en b e eseanseenseebeenbeeneenbeeneenseenes 125
T4.1.1 INEEOAUCHION. ...ttt sttt st st s bbb s b e b s et b sa et besaeenesnesaens 125
T4.1.2 FRATUTES.....eeviiiiieiieiet e st b e e b b e h e b ettt ettt et 125
14.1.3 Battery cCharger SPECITICATION.eiutiitieitieitt ettt ettt ettt ettt et eeae e st et e et e enteenteeseesseenseenseeneeenee 126

14.2 MOAUIE CONTIGUIATION.etiiitiiiitiitieteeitete ettt ettt sttt sttt b e et b e eb e sbe e st sb e et e ebee bt s bt e nbeeasesbeeabesbeenbesbe et e ebeenaeenee 126
14.2.1 MOAUIE AEPEINACIICIES.veiuiiiiiiieiiteeiee ettt ettt ettt et sab e st e e bee s bt e atesabeesabeeastesabeessbesabeesabeenatesateesasesnseens 126

14.3 DCD hardware IMPIeMENTATION.ecueerueeietieteeteetterteeteeteesteetesteesteeteaseesteenteseeesseesesaeesseenseemeesseeseeneesseeseeneesseenseenes 127
14,4 EXAMPIE COUR...c.uviiiimiiitiiieiteet ettt ettt ettt bttt e bt bt e st s bt et s bt e bt eb b e bt e et e e bt e st e ebe et e eb b enbeeateebe et e ebeenaeenee 128

Chapter 15
Universal Serial Bus OTG Module

I5.1 TNEFOQUCTION. ...ttt ettt ettt ettt e b et e ae e bt eb e e bt eaeeb e e b sae b e b sueene b e 131
I5.2 FALULES. ...ttt a e e bbb e b e h b et s a e s 131
15.3 USB OPEIation MOGES.eetieutieuietieteetieeteeteeite et et et e et e sbeeateestesb e e aeeseeabeeabeeseese e e bt emeesaeenseensesaeesbeenseemtesaeensesneesseenseenes 131

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

10 Freescale Semiconductor, Inc.

Section number Title Page
15.4 Voltage regulator OPETAtiON MIOAES.ccuutetieriiiitieeieerite ettt ettt et e et e st e e bt e s bt e s bt ettt e beesabeesbteeabeesaseessbesnseesaseanseesases 132
15.5 MOAUIE CONTIGUIATION. c..c.tteutietietiettett ettt ettt ettt et et ete et e b e et et e et e e bt ese e st emeeeaeeaeeeeeemsesaeemseeseenseeseenseeseanteeneeseeneenseenes 134
15.5.1 MOAUIE AEPEIACIICIES.eeutieiiiieiiieiiete ettt ettt ettt ettt et ettt et ee e b e st e bt et eat e bt eatesbeenteebeenneenee 134
15.5.2 USB INTtIAlIZAtION PIOCESS. c..uterutieriteeitteiitertieettesteesttesteesttesateesateesttesabeasaaesabeesabeastesabeessbesnbeesabeenatesabeesasesseenns 134
15.5.3 Voltage regulator INTHAIIZATION.ceouiiitieiieieetieetiet ettt ettt et et e st e bt e st e este et e sbe e beenbeentesseesaeenbeeneeenes 136

15.6 Hardware implemeEntation.cccueruieiiritirieeienie ettt sttt ettt ettt sb et sb e et e sb e e bt s bt e bt ebsenbeeabesbeeabesbe et e sbeeneeene 136
15.6.1 CONNECHON IAZTAM.....ccuveiiuiieiitieiieeitte ettt et ettt et et eesabeesaee ettt e bteeabeesabee sttt esbbeanseesabeesaseensbeessneenseesnbeesaseenns 136
15.6.2 Components and placement SUZZESTIONS.cc.eeuiruiertietieteeiiertteierteetesteetesteestesteente et eenseeseenteeneeseeneenseeneesseenees 138
15.6.3 Layout reCOMMENAATIONS.eouteutirttetietietteteeite et ete et e ett ettt e eteeteeaee st e et e ebeesbeeateebee st eenteebeesteesteebeenbeentesbeenseenee 139

15.7 EXAMPIE COUC......eiiuiieniiiiiieeieette ettt ettt ettt et et e h ettt e sat e e bt e e ab e e bt e e bt e eat e e st e eastesat e e st e sabeesabeenbtesabeessbeenbeesabeenseenases 140
I5.7.1 DEVICE COUC......eeutiuietieie ettt ettt ettt ettt ettt et e e e bt et e st e bt e et e ea e em bt eaee bt en s e eseem b e este bt ensees e et e eneeeseenteeneeneeenes 140
I5.7.2 HOSE COUR......viiiiiiiiiitiet ettt b e e a e b b s s a et a ettt b et en e b e 141

Chapter 16
FlexCAN Module

LO.1 OVEIVIBW...iiiiiiiiiici ettt sttt ettt ettt ettt ettt e a et e st e a e bt e aeea e b e e b sa e b b saeen e b e 145
16.1.1 INEFOAUCHION.uiiiiiiiiiiiiiiciec e s s e e s b e s b e et saeeaesaesae 145

L. 1.2 FRATUIES. ..ottt ettt ettt ettt ettt et e st e s a e e bt e ae e sh e e bt e meeea e e bt emt e e et e ebeemeeeaeeebeemeeemeeeseenaeemeeeaeenbeeneesneenseenes 146

16.2 CONIGUIAtION EXAMIPIES. ..c..tiutiriiirtiiiieitiete ettt ettt ettt ettt eat et e e ebt e bt eat e e bt e bt e st e eb e et e estesb e et e ebtenbeemtesbee bt entesbeenaeenee 146
16.2.1 FleXCAN INIHAHZATION.oueiuiiiiiiiiiiieiiitete et s saesne s 147
16.2.1.1 Code example and eXPlanation...........cccueieerieruierteeieeiieeteeste et eeeeette st et eteseesseesteesbeeeeeneeeseesseeneeans 147

160.2.2 RECEIVE PIOCESS. c.eveentieutettenteeitenteemtestteste et e steeatesbt e teeate s bt eateebe e bt ea b esbees bt ebt et e ea b eeb e eabeeb b e bt eabeebe et e ebtenbeenteebeeseenee 149
16.2.2.1 Code example and eXPlanation...........c.ueeruerriitiniieriiie ettt ettt et e st e sbeesireesbeesaeeesareeaee s 149

16.2.3 TTANSITIE PIOCESS....veuvertirieueeiteuteuteuteatetetentesteetesueete e bt sbeebeeateseeatestessesse st ense st ente e bt sae et e ebeebeebeenteneensensensensensennensens 149
16.2.3.1 Code example and eXPlanation...........cocueriereireeiiriinienieete ettt et ettt sae et et et ebeesbeenteens 149

16.2.4 REAA MESSAZE....euveeutieieeetteeteesite et e et e sttt et e st e sate ettt s bt e sateeabaeeabeeea bt e sbbeeabeesabeesabeenbeesabeenateenbeeenbeensbeesbesnseenns 150
16.2.4.1 Code example and eXPlanation...........cccueeeerierieeriteieeiieetee st et et te st ee bt eteeeesstesteesbeebeeneeeneesseeseans 150

16.2.5 Configuration of Rx FIFO ID filter table lements.ccocceririiririineiieninienieeteiceteseete e 151
16.2.5.1 Code example and eXPlanation..............eeruerruitiriieriieeiiie ettt siee sttt et e st esbeesateesibeesaeeesbreeaees 151

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 11

Section number Title Page
Chapter 17
Segment LCD Controller
I7.1 OVEIVIBW.c.iiiiiieiiiiei ettt sttt ettt ettt ettt et et et e bt s e at e bbbt ea e b e e aesa e b e b saeen e b e 153
I7.1.1 INEFOAUCTION. ...ttt s s b b s b e s b e et saeeaesnesae 153
17.2 POWET SUPPLY ...ttt ettt ettt et ettt s a et e e h et e e h e e bt es e e bt em e eh e em et es e e et ea e e bt e aee bt eat e bt en b e eheen b e ene et e eneeneenes 154
17.3 LLOW POWET INOMES.eetiuiiiiitieiteett ettt ettt ettt ettt st e e s bt et e bt e bt eate s bt et e s bt et e sbt e bt eab e e bt es bt ebe et e eb s e sbeeatesbe et e ebeenaeenee 155
I7.4 CIOCK SOUICE. ...ttt e e a e a b e e b e se e d et ea e neeae e eneene e 155
17.5 Hardware CONSIACTATIONS.eiuietiitietietieteetie et ete et e et ete e bt et e et e et e et e et e eseesbeeaeeeseeneeeseebeeaeenbeessenbeensenbeentesseensesseenseene 156
17.5.1 General routing and PLACCTNENEcc.eertiirtiirieiieriterte ettt ettt ettt ettt sb et et sbte s bt e bt eabesstesaeenbeeneeeaee 156
17.6 EMC and ESD CONSIAETALIONS.ccuiiiiiiiiiiiiiiiiiiiiieiciee sttt st s s 156
17.6.1 Code example and eXPIANAtION.coueitieitiiie ettt ettt ettt et e et eaeeeseesbe e bt esbeeseesbeenbeenbesneesaeenseeneeenes 156
17.77 DemONSLIAtION COUE........ouiiuiiiiiiiiititiite ittt ettt ettt be bbb bbbt st eae e et et e st et ae e e b sae e e b e 158
Chapter 18
Touch Sense Input (TSI) Module
I8.1 OVEIVIBW...iiiiiiiiii ettt ettt et ettt ettt ettt et et et eb bt e ae bbbt ea e b b e b s ea e e 161
182 TNEFOAUCTION. ...ttt et a e e e a e n e b ea e b aesa s neenesaeen b e 161
I8.3 FRATUIES. ...ttt ettt ettt et ettt e et e e b e a e eh et e ea e e st emt e es s e eh e em b e eseea bt em s e e b e ea bt en e e bt en bt eh e et e enteeh e e bt enteehe et e eneeneenes 163
18.4 TSI CONMTIGUIALION.ettiutieitiitieteeitet ettt ettt ettt et e bt et e st e bt e st e bt e bt e st e eb e et es bt eb e et e ebtesbeenteeb e e bt entesbeebeenee 164
18.4.1 Configuration EXAMPIE.........c.ccoiuiiiiiiiiiiiieiiieee ettt ettt s ettt eb e bt eeat e e sbbe e bt e sabeesabeebtesbeesabeenes 166
18.4.1.1 Code Example and EXPlanation..........c.ccocueoieiiriiriieniieieetieieeie ettt esee st et eieeseeens 167
18.5 TSI hardware IMpPIEMENTALION.cc.uevutrtirtieterteete ettt ettt ettt ettt ettt et eatesaeeatesbeestesbeesae s bt esbesbe et e sbs et e ebeenbeeseenaeenee 169
18.5.1 PCB Routing and PLACEIMENL.ccccuiiriiiiiiiiiieiie ettt sttt sttt sb e e st ettt e bt e sabeesbaeenbeesabeessbesseenas 169
Chapter 19
Using Peripheral Delay Block (PDB) to Schedule Analog to Digital Converter (ADC) Conversions
LO.1 OVEIVIBW....iiiiiiiiiii ettt e et b e e e a e n e b e a e b s a e 171
L 2 P B 118 (T L1) OO OO OO RRRTRPR 171
TO.1.2 FRATUTES. ...ttt st s e b b et b et ea bt et ea et et eae et et et ettt be bt nae 172
19.2 CoONfigUIation EXAMIPIE.ccouuiiriiiiiieitie ettt ettt bt et ettt st esate e et e e s bteeabe e bt e eabeesstesabeessbesabeessbeenbeesabeenbeennsesases 173
19.2.1 PDB-triggered single-ended ADC CONVEISIONS.cctiieteieieieietentietentt ettt ettt st sae vt et ese s essennenaens 173
19.2.1.1 Turn on ADC and PDB CIOCKS......cc.ccocoiiiiiiiiiiiiiiiciciiictceeeeet et 174

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

12 Freescale Semiconductor, Inc.

Section number Title Page
19.2.1.2 Configure System Integration module for ADC defaults..........cccueerveiriiiiiiiiniiiiieeeeee e 174

19.2.1.3 Configure Peripheral Delay BIock (PDB)......cc.cccciiriiiiiiiniiniiieicicientceeeese et 174

19.2.1.4 Determine ADC CONTIGUIATION. ¢...cutirteiiiriierieiieitt ettt ettt ettt et ettt eebe st enbeeiaenbeens 175

19.2.1.5 USING ADC AITVET...ccutiiiiieiiiieiieeite ettt ettt ettt st ettt e s bt e e bt e s bt e s st e e s abeesatesabbesbeesabeesaseenaeean 176

19.2.1.6 CaliDIate ADICS. .. .oouieiieiiietieie ettt et ettt e ettt et e st e e a e e bt eab e et e e bt enbeesee bt enteeseenbeenbeeneenseans 176

19.2.1.7 Enable ADC and PDB INTEITUPLS....c...ooviriiriiiiiiiiiieniteieeie ettt ettt sttt st st sie e ens 176

19.2.1.8 Software triggering Of PDB........ccouiiiiiiiiii ettt 176

19.2.1.9 Handle ADC and PDB INTEITUPLS.ccuertiiiriiriinienieteiententetentest sttt stestes e s sne e sae st s e saesnessesaens 177

19.2.2 ADC device hardware implementation...........co.eeueruieriiriiniieieeteeie ettt ettt ettt ettt et bttt saee e eae 178
19.2.3 PDB device hardware implemMeENtation.cueerteeiruieriieeiiie ettt ettt et ettt e siteesibeesbeesabaessbeesbaeesaeeenbaeesaneenns 178

19.3 PCB design reCOMMENAALIONS.couteuteuteuieiieiieiieiteitetet et ettt st st sttt ebe st bttt e sttt ebteaeeseeateseess et ensensesensennenaesaensenee 178
19.3.1 Layout GUIACIINES.eeutiiiiiieiititieiteeit ettt ettt et ettt b et e a e eb et e bt e eb et e bt e sbe et e ebtenbeentesbeeneeenee 178
19.3.1.1 General routing and PIACEIMENL.........ceiutiiriieriitiiie ettt ee ettt et e st e st e e st e e st e esateesabeenbeeesaneeaeeas 178

19.3.2 ESD/EMI CONSIAETALIONSeuiitieiietieiieiteeitesteeteetteteetteteeutesteeseesteestesseestesbeeseesbeense et eenseeseenseaneenseeneenseeneenseeneas 179

Chapter 20
Using OPAMP for Kinetis Microcontrollers
20,1 OVEIVIBW....ceutitieteeiiete ettt ettt et et e e te e te et e e et eae e bt ea e e eaeemteseeemseeateaseemteee e emsesheenbeeme e st eeseebeembeeseensees s et e enseeseenseeneenseeneeneeenes 181
20.2 TNEOAUCTION. ...ttt ettt sttt ettt ettt et ekttt s e bt bt e bt et e bt eaeeaeebesaeeue b e saeeaenes 181
20.3 FEALULES. ...ttt et e e a b b b e h e e b e st s a e s 181
20,4 INOMENCLATULE.eteett ettt ettt ettt ettt et et e et e ea e e st e et e eb e e beeseen b e emseebeeaseeseen bt emeees e emtees e et e enseeseemteeseebeenseeseenseeneeneeanes 182
20.5 USEI CASE EXAMIPIES....c..eeuriititieitieitenteeite ettt ettt ettt ettt et ea e et e eateeb e et e eate s bt et e ebeesbeeae e eb e e bt eateeb e et e ebtesbeenteeaeenbeentesbeenaeenee 182
20.5.1 ON-ChIP TNEEZTALION. ...ceutiiiiiieiiteriteeite ettt e st e sttt e st e e bt e e bt e sabeesabeesate e bteeabtesabeeeabeesateesabeesteenbeesaneesabeenaseenns 184
20.5.2 Device hardware ImMpPlemMEntation.cc.eeuerieruiertiete ettt ettt eeesee st et e e et e beesee st eebeenbeenbeeseesseesseenseeneeenes 185
20.5.3 OPAMP demo With DACcoocciiiiiiiiiienetenete ettt sttt st 186
Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 13

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

14

Freescale Semiconductor, Inc.

Chapter 1
General System Setup (Software Considerations)

1.1 Software considerations

1.1.1 Overview

This chapter provides a quick look at some of the general characteristics of the Kinetis
family of MCUs. This is a brief introduction of the operation of the devices and typical
software initialization.

For more information see the device-specific reference manual and data sheet.

1.1.2 Code execution

The Kinetis family features embedded Flash and SRAM memory for data storage and
program execution. Additionally, external memory can be accessed over the FlexBus
external bus interface. Code can also be executed over the FlexBus. For maximum
performance, executing from internal memory is recommended.

1.1.3 Reset and booting

When the processor exits reset, it fetches the initial stack pointer (SP) from vector table
offset 0 and the program counter (PC) from vector table offset 4. The initial vector table
must be located in the flash memory at the base address (0x0000_0000). However, the
vector table can be relocated to SRAM after the boot-up sequence if desired. Kinetis
devices only support booting from internal flash. Any secondary boot must first go
through an initialization sequence in flash.

After fetching the stack pointer and program counter, the processor branches to the PC
address and begins executing instructions.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 15

A ————
Software considerations

For more information, see the Reset and Boot chapter of the device-specific reference
manual.

1.1.3.1 Device state during reset

With the exception of the JTAG pins, during reset the digital I/O pins go to a disabled
(high impedance) state with internal pullups/pulldowns disabled. Pins with analog
functionality will default to their analog functions.

1.1.3.2 Device state after reset

After reset the digital I/O pins remain disabled until enabled by software. Also, interrupts
are disabled and the clocks to most of the modules are off. The default clock mode after
reset is FLL Engaged Internal (FEI) mode. In this mode the system is clocked by the
frequency-locked loop (FLL) using the slow internal reference clock as its reference. The
watchdog timer is active; therefore it will need to be serviced (or disabled if debugging).
The core clock, system clock, and flash clock are enabled after reset to support booting.
Also, the flash memory controller cache and prefetch buffers are enabled.

1.1.4 Typical system initialization

The following is a summary of typical software initialization. The code snippets are taken
from a "hello_world" project written in AR Embedded Workbench. This project is
available in the Kinetis sample code found in the file KINETIS512_SC.zip which
accompanies this users guide.

1.1.4.1 Lowest level assembly routines

These routines are assembly source code found in the file crt0.s. The address of the start
of this code is placed in the vector table offset 4 (initial program counter) so that it is
executed first when the processor starts up. This is accomplished by labeling this section,
exporting the label, and placing the label in the vector table. The vector table can be
found in vectors.h. In this example the label used is __startup.

1.1.4.1.1 Initialize general purpose registers
As a general rule, it is recommended to initialize the processor general purpose registers

(RO-R12) to zero. This is done with the move instruction.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

16 Freescale Semiconductor, Inc.

Chapter 1 General System Setup (Software Considerations)

MOV r0, #0 ; Initialize the GPRs
MOV rl,#0
MOV r2,#0
MOV r3,#0
MOV r4,#0
MOV r5, #0
MOV r6,#0
MOV r7,#0
MOV r8,#0
MOV r9, #0
MOV rl0, #0
MOV rll, #0
MOV rl2,#0

1.1.4.1.1.1 Unmask interrupts at ARM core

CPSIE i ; Unmask interrupts

1.1.4.1.1.2 Branch to start of C initialization code

import start
BL start ; call the C code

1.1.4.2 Startup routines

These routines are C source code found in the files start.c and sysinit.c. This code
provides general system initialization that may be adapted depending on the application.

1.1.4.21 Disable watchdog

For code development and debugging, it is best to disable the watchdog. This requires
unlocking the watchdog first. Keep in mind that there are timing requirements for the
execution of the unlock steps. The two step unlock sequences must execute within 20
clock cycles of each other. Therefore interrupts must be disabled and single-step
debugging cannot be done during this section.

/* disable all interrupts */
asm(" CPSID i");

/* Write 0xC520 to the unlock register */
WDOG_UNLOCK = 0xC520;

/* Followed by 0xD928 to complete the unlock */
WDOG_UNLOCK = 0xD928;

/* enable all interrupts */
asm(" CPSIE i");

/* Clear the WDOGEN bit to disable the watchdog */
WDOG_STCTRLH &= ~WDOG_STCTRLH_WDOGEN_MASK;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 17

Software considerations

1.1.4.2.2 Initialize RAM

Depending on the application, the next steps may be required. First, copy the vector table
from flash to RAM, copy initialized data from flash to RAM, clear the zero-initialized
data section, and copy functions from flash to RAM.

1.1.4.2.3 Enable port clocks

To configure the I/O pin muxing options, the port clocks must first be enabled. This
allows the pin functions to later be changed to the desired function for the application.
SIM SCGC5 |= (SIM SCGC5 PORTA MASK

| SIM SCGC5 PORTB_MASK

| SIM SCGC5 PORTC MASK

| SIM SCGC5 PORTD MASK

| SIM SCGC5 PORTE MASK) ;

1.1.4.2.4 Ramp system clock to selected frequency

The Multipurpose Clock Generator (MCG) provides several options for clocking the
system. Configure the MCG mode, reference source, and selected frequency output based
on the needs of the system.

1.1.4.2.5 Enable pin interrupt

In this example, pin PTA4 is connected to a push button. An interrupt is generated when
the button is pressed. A GPIO interrupt is used instead of an NMI interrupt because an
edge-sensitive interrupt is preferred versus a level-sensitive interrupt. This ensures that
one interrupt will occur per button press. Interrupts need to be enabled in the ARM core,
as described in the NVIC chapter.

/* Configure the PTA4 pin for its GPIO function */
PORTA PCR4 = PORT_ PCR MUX (0x1); // GPIO is altl function for this pin

/* Configure the PTA4 pin for rising edge interrupts */
PORTA PCR4 |= PORT PCR_IRQC (0x9) ;

/* Initialize the NVIC to enable the specified IRQ */
enable irg(87);

NOTE
To save space, the enable_irq() function is not shown. See the
interrupts section for details on how to enable the IRQ. Also, to
save space the interrupt service routine is not shown.

1.1.4.2.6 Enable UART for terminal communication

See in this document chapter 11, "Universal Asynchronous Receiver and Transmitter
(UART) Module."

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

18 Freescale Semiconductor, Inc.

Chapter 1 General System Setup (Software Considerations)

1.1.4.2.7 Jump to start of main function for application

/* Jump to main process */
main () ;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 19

Software considerations

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

20 Freescale Semiconductor, Inc.

Chapter 2
General System Setup (Hardware Considerations)

2.1 Hardware considerations

2.1.1 Overview

This chapter will outline the best practices for hardware design when using the Kinetis
MCUs. The designer must consider numerous aspects when creating the system so that
performance, cost, and quality meet the end-user expectations. Performance usually
implies high speed digital signalling, but it also applies to accurate sampling of analog
signals. Cost 1s influenced by component selection, of which the PCB may be the most
expensive element. Quality involves manufacturability, reliability, and conformance to
industry or governmental standards.

The Freescale Tower Systems are great for evaluating the operation and performance of
the many features of Freescale MCUs. However, evaluation systems are not ideal
examples for implementation of robust system design techniques. This document will
mention some of the hardware techniques found on the Freescale Tower Systems, and
will give recommendations that are more appropriate to conventional systems that are not
required to implement all of the feature options.

2.1.2 Floorplan

The organization of the printed circuit board (PCB) depends on many factors. Typically,
there are connectors, mechanical components, high speed signals, low speed signals,
switches, and power domains, among others, that need to be considered. While placement
of connectors and some mechanical components (switches, relays, etc) is critical to the
end product’s form, there are some basic recommendations that can significantly affect
the electrical performance and electromagnetic compatibility (EMC) of the PCB
assembly.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 21

Hardware considerations

2.1.2.1 Connectors

The PCB should be organized so that all the connectors are along one edge of the board
and away from the MCU. The concept here is to prevent placing the MCU in-between
connectors that can become effective radiators when cables are attached. This also keeps
the MCU from being in the path of high energy transients that can shoot across the board
from one connector to another. Connectors may be placed on adjacent edges of the PCB
if necessary, as long as the MCU is not in a direct path between the connectors.

Connector locations should allow for placement of filter components. Noise must be
suppressed at the connector, before it can propagate onto the PCB. There will be more
information on this topic in the input filtering section.

2.1.2.2 Power domains

While many systems have only one power supply voltage, they typically have “clean”
and “noisy” sections. The definitions of “clean” and “noisy” are not important — the
concept is that noise from one section should not interfere with another. In general, AC
power should be separated from DC power and digital should be separated from analog.

Power domain isolation is described in more detail in Freescale application note AN2764,
"Improving the Transient Immunity Performance of Microcontroller-Based
Applications." The basic concept is to isolate or place a low pass filter between power
domains. The AC power domain should be physically isolated from the DC domains.
Physical separation or decoupling filters (Figure 2-1) should be used to separate different
DC functional blocks (power domains) when necessary. Note that the Tower System
boards have multiple decoupling filters to separate digital and analog domains. Also note
that decoupling may not be needed in many applications — physical separation of domains
may be sufficient.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

22 Freescale Semiconductor, Inc.

Chapter 2 General System Setup (Hardware Considerations)

Vop O————— " o O Vpp 180
_.-"q__ll"\.v.-"."_,_ —
UNFILTERED | | FILTERED
DC INPUT —_— —_— DC INPUT

ST L

Vss O—@—7 |

—e————O Vss150

Figure 2-1. Generic decoupling filter

In general, the decoupling network series elements are small inductors or ferrite beads
that have a small impedance (about 100 Q at 100 MHz). The capacitors are generally

10nF to 1uF and do not have to be the same value on both sides of the filter — select a
lower value for the side that has the higher frequency content.

2.1.3 PCB routing considerations

This section covers critical power and filtering aspects of PCB layout.

2.1.3.1 Power supply routing

Routing of power and ground to digital systems is a topic that is discussed and debated in
many textbooks and references. The basic concept is to ensure that the MCU and other
digital components have a low impedance path to the power supply. The typical guidance
that was given for one and two layer PCBs was to use wide traces and few layer
transitions. The recommendations for today’s high speed MCUs follow those given for
high speed microprocessor systems — specifically, use planes for power and ground. This
may raise the PCB cost, but the benefits of crosstalk reduction, reduction of RF
emissions, and improved transient immunity can be realized with lower overall
production and maintenance costs.

In general, the ground routing should take precedence over any other routing. Ground
planes or traces should never be broken by signals. For packages with leads, like the
LQFP, a ground plane directly below the MCU package is recommended to reduce RF
emissions and improve transient immunity. All of the VSS pins of the MCU should be
tied to a ground plane. Ground traces (from a plane) should be kept as short as possible as
they are routed to circuitry on signal layers (top and bottom). Power planes may be
broken to supply different voltages. All of the VDD pins of the MCU should be tied to

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 23

A
Hardware considerations

the proper power plane. Power traces (from the planes) should be kept as short as
possible as they are routed to circuitry (pullups, filters, other logic & drivers) on the top
and bottom layers. More information is given in the PCB Layer Stack-up section below.

2.1.3.2 Power supply decoupling and filtering

As mentioned in the power domains section, decoupling networks are used to separate
domains. Bypass capacitors, while also called decoupling capacitors, are the storage
elements that provide the instantaneous energy demanded by the high speed digital
circuits.

Power supply bypass capacitors must be placed close to the MCU supply pins. The basic
concept is that the bypass capacitor provides the instantaneous current for every logic
transition within the MCU. Fortunately, each Kinetis MCU has a low voltage internal
regulator for the MCU core logic, so the abrupt current demands of the internal high
speed logic are not as critical. However, external signals demand energy from the power
rails when they transition from one logic level to the other. The bypass capacitors provide
the local filtering so that the effects of the external pin transitions are not reflected back
to the power supply, which causes RF emissions.

The basic rule of placing bypass capacitors as close as possible to the MCU is still
appropriate. The idea is to minimize the loop created by the capacitor between the VDD
and VSS pins. The implementation of this rule depends on the number of mounting
layers, how the supplies are routed, and the physical size of the capacitors:

e Number of mounting layers — PCBs with components mounted on the top side only
will have a significant limitation on how close the bypass caps can be located due to
the number of components that require space. PCBs that have components mounted
on both sides of the PCB allow closer placement of the bypass capacitors.

* Supply routing — With the Ball Grid Array (BGA) package, all of the VDD/VSS
pairs are routed to other layers under the package. This allows easier attachment of
the VDD and VSS pins to the power and ground planes within those layers. The
bypass capacitors can be placed in the area below the MCU, with connections very
close to the power pins. See Figure 2-2.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

24 Freescale Semiconductor, Inc.

Chapter 2 General System Setup (Hardware Considerations)

BGA pads

Place bypass
caps on bottom
layer in center
of via field

Figure 2-2. K60 TWR board top layer BGA pad arrangement
* Supply routing — For Quad Flat Pack (QFP) packages, the power supply pins may be
supplied radially to the MCU using traces rather than from planes. While it is
adequate to place the bypass capacitors close to the VDD and VSS pins on the traces
leading to the MCU, it is better to have the ground side of the bypass capacitor tied to
the ground plane (through a via and short trace) close to the VSS pin and the VDD
side tied to the power plane (through a via and short trace) close to the VDD pin.

2.1.3.3 Oscillators

The Kinetis MCU starts up with an internal digitally controlled oscillator (DCO) to
control the bus clocking, and then software is used to enable one or two external
oscillators if desired. The external oscillator for the Multipurpose Clock Generator
(MCG) module can range from a 32.768 kHz crystal up to a 32 MHz crystal or ceramic
resonator. The external oscillator for the Real Time Clock (RTC) module is a 32.768 kHz
crystal.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 25

Hardware considerations

2.1.3.3.1 RTC oscillator

The RTC oscillator connected to the EXTAL32 and XTAL32 pins is the simplest to
route. Both pins are located on outside ring pads on the BGA package, so the crystal can
be placed on the top layer of the PCB, close to the MCU. Since this oscillator does not
require any other external components the routing is straight from the crystal to the MCU
pins.

While the 32.768 kHz crystal is available in leaded cylindrical and surface mount
packaging, we recommend using the cylindrical package to simplify placement and
routing. The EXTAL32 and XTAL32 pins can be brought out directly from the MCU and
the crystal can be placed as close as possible to the MCU, which improves noise
immunity. Surface mount crystals may have pad spacing that is further apart than the
leaded crystals, making the routing and placement more complex.

2.1.3.3.2 MCG oscillator

While the RTC oscillator can also be used as a source for the MCG module, it is limited
to 32 kHz. The high speed oscillator that can be used to source the MCG module is very
versatile. The component choices for this oscillator are detailed in the device-specific
reference manual. The placement of this crystal or resonator is described here.

The EXTAL and XTAL pins are located on the outside pad ring of the BGA package and
on corner pins of the QFP package. This allows room for placement and routing of the
crystal or resonator on the top layer, close to the MCU. The feedback resistor and load
capacitors, if needed, can be placed on the top layer as well. See Figure 2-3, Figure 2-4,
and Figure 2-5.

Note that the low power modes of this oscillator do not require a feedback resistor, and
may not require external load capacitors. (Check the device-specific reference manual for
details.) This makes it as simple as possible since only one component has to be placed
and routed. Low power oscillators are more susceptible to interference by system
generated noise, so the guidelines for crystal routing are important.

The crystal or resonator should be located close to the MCU. No signals of any kind
should be routed on the layer directly below the crystal. A ground plane on the layer
directly below the crystal is recommended. A guard ring should be placed around the
crystal and its load components to protect it from crosstalk from adjacent signals on the
mounting layer. This guard ring can originate from the VSS pin adjacent to the crystal
pins. Note that the guard ring (and load capacitors) is connected to the ground plane in
Figure 2-4 and Figure 2-5.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

26 Freescale Semiconductor, Inc.

Chapter 2 General System Setup (Hardware Considerations)

R2
XTAL

R1

EXTAL c1$ Y[i|—_T_$C2

Figure 2-3. Typical crystal circuit

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 27

Hardware considerations

0000,
.b

Figure 2-4. Potential crystal layout for BGA

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

28 Freescale Semiconductor, Inc.

Chapter 2 General System Setup (Hardware Considerations)

Figure 2-5. Potential crystal layout for LQFP

2.1.3.4 General filtering

General purpose I/O pins should have adequate isolation and filtering from transients.

2.1.3.4.1 RESET_b and NMI_b

Critical input pins, like RESET_b and NMI_b should have 100 nF capacitors close to the
MCU for transient protection. Each pin has a weak internal pullup, but an external 4.7 kQ
to 10 kQ pullup is recommended. As with power pin filtering, it is recommended to
minimize the ground loop for the capacitor and the VDD loop for the pullup resistor for
these pins.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 29

A
Hardware considerations

The RESET_b pin also has a configurable digital filter to reject potential noise on this
input after power-up. The configuration bits are located in the SIM_SOPT6 register.
While use of this filter may negate the need for the pullup and capacitor mentioned
above, it is still recommended to use external filtering in electrically noisy environments.

2.1.3.4.2 General purpose I/O

General purpose inputs, such as low speed inputs, timer inputs, and signals from off-
board should have low pass filters (series resistor and capacitor to ground) to prevent data
corruption due to crosstalk or transients. The filter capacitor should be placed close to the
MCU pin, while the resistor can be placed closer to the source.

Inputs that come from connectors should have low pass filtering at the connector to
prevent noise from propagating onto the PCB. This requires a robust ground structure
around the connector. Series resistors for signals that come from off-board should be
placed as close to the connector as possible. A filter cap closer to the MCU input pin may
be required if the signal trace length is very long and can pick up noise from other
circuits.

Output pins should not have any significant capacitance placed close to the MCU. These
signals can have capacitors at the load or connector to minimize radiated emissions if
necessary.

2.1.3.4.3 Analog inputs

Analog inputs should have low pass filters as well. The challenge with analog inputs,
especially for high resolution analog-to-digital conversions, is that the filter design needs
to consider the source impedance and sample time rather than a simple cutoff frequency.
This topic cannot be discussed in detail here, but the general concept is that fast sample
times will require smaller capacitor values and source impedances than slow sample
times. Higher resolution inputs may require smaller capacitor values and source
impedances than lower resolution inputs.

In general, capacitor values can range from 10 pF for high speed conversions to 1uF for
low speed conversions. Series resistors can range from a few hundred Ohms to 10 kQ.

2.1.4 PCB layer stack-up

The Kinetis MCUs are high speed integrated circuits. Care must be taken in the PCB
design to ensure that fast signal transitions (rise/fall times and continuous frequencies) do
not cause RF emissions. Likewise, transient energy that enters the system needs to be
suppressed before it can affect the system operation (compatibility). The guidance from

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

30 Freescale Semiconductor, Inc.

L __4
Chapter 2 General System Setup (Hardware Considerations)
high speed PCB designers is to have all signals routed within one dielectric (core or
prepreg) of a return path, which usually is a ground plane. This allows return currents to
predictably flow back to the source without affecting other circuits, which is the primary
cause of radiated emissions in electronic systems. This approach requires full planes
within the PCB layer stack and partial planes (copper pours) on signal layers where
possible. All ground planes and ground pours must be connected with plenty of vias.
Likewise, all “like” power planes and power pours must be connected with plenty of vias.

Recommended layer stackups:

4-Layer PCB A:
Layer 1 (top — MCU location)—Ground plane and pads for top mounted
components, no signals
Layer 2 (inner)—signals and power plane
Thick core
Layer 3 (inner)—signals and power plane
Layer 4 (bottom)—ground plane and pads for bottom mounted components, no
signals

4-Layer PCB B:
Layer 1 (top — MCU location)—signals and poured power
Layer 2 (inner)—ground plane
Thick core
Layer 3 (inner)—ground plane
Layer 4 (bottom)—signals and poured power

6-Layer PCB A:
Layer 1 (top — MCU)—power plane and pads for top mounted components, no
signals
Layer 2 (inner)—signals and ground plane
Layer 3 (inner)—power plane
Layer 4 (inner)—ground plane
Layer 5 (inner)—signals and power plane
Layer 6 (bottom)—ground plane and pads for bottom mounted components, no
signals

6-Layer PCB B:
Layer 1 (top — MCU)—signals and power plane
Layer 2 (inner)—ground plane
Layer 3 (inner)—signals and power plane
Layer 4 (inner)—ground plane
Layer 5 (inner)—power plane
Layer 6 (bottom)—signals and ground plane

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 31

A ————
Hardware considerations
6-Layer PCB C:

Layer 1 (top — MCU)—signals and power plane

Layer 2 (inner)—ground plane

Layer 3 (inner)—signals and power plane

Layer 4 (inner)—signals and ground plane

Layer 5 (inner)—power plane

Layer 6 (bottom)—signals and ground plane

8-Layer PCB A:
Layer 1 (top — MCU)—signals
Layer 2 (inner)—ground plane
Layer 3 (inner)—signals
Layer 4 (inner)—power plane
Layer 5 (inner)—ground plane
Layer 6 (inner)—signals
Layer 7 (inner)—ground plane
Layer 8 (bottom)—signals

8-Layer PCB B:
Layer 1 (top — MCU)—signals and power plane
Layer 2 (inner)—ground plane
Layer 3 (inner)—signals and power plane
Layer 4 (inner)—ground plane
Layer 5 (inner)—power plane
Layer 6 (inner)—signals and ground plane
Layer 7 (inner)—power plane
Layer 8 (bottom)—signals and ground plane

8-Layer PCB C:
Layer 1 (top — MCU)—signals and ground plane
Layer 2 (inner)—power plane
Layer 3 (inner)—ground plane
Layer 4 (inner)—signals
Thick core
Layer 5 (inner)—signals
Layer 6 (inner)—ground plane
Layer 7 (inner)—power plane
Layer 8 (bottom)—signals and ground plane

8-Layer PCB D:
Layer 1 (top — MCU)—signals and ground plane
Layer 2 (inner)—power plane
Layer 3 (inner)—ground plane

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

32 Freescale Semiconductor, Inc.

4
Chapter 2 General System Setup (Hardware Considerations)
Layer 4 (inner)—signals and power plane
Thick core
Layer 5 (inner)—signals and power plane
Layer 6 (inner)—ground plane
Layer 7 (inner)—power plane
Layer 8 (bottom)—signals and ground plane

In general, avoid placing one signal layer adjacent to another signal layer.

2.1.5 Other module hardware considerations

2.1.5.1 VBAT

The VBAT input supplies power to the RTC and a 32-byte register file during
powerdown and low power modes. This pin can be sourced from the VDD supply or
from a dedicated back-up battery cell. A simple battery isolator consists of a dual
Schottky array with common cathodes. The TWR board example below (Figure 2-6) uses
the BAT54C device to provide battery back-up when the main system power is off. A
100 nF bypass capacitor, placed as near as possible to the MCU, is recommended to
minimize the effects of supply switching events.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 33

Other module hardware considerations

VDD b
P

— BAT54C =

——¢— VBAT

Figure 2-6. VBAT connection example

2.1.5.2 Voltage reference module

If the output from the Voltage Reference Module is used in tight-regulation buffer mode
a 100nF capacitor must be connected between the VREF_OUT pin and ground.

2.1.5.3 Debug interface

The Kinetis MCUs use the Cortex Debug interfaces for debugging and programming.
The 19-pin Cortex Debug+ETM interface provides connections for JTAG and Serial
Wire debugging, as well as target power. The 9-pin Cortex Debug interface provides
connections for JTAG and Serial Wire debugging. Figure 2-7 shows the 20-pin header
implementation (19 pins populated) as used on the TWR system boards. Figure 2-8
shows the 10-pin header implementation (9 pins populated).

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

34 Freescale Semiconductor, Inc.

Chapter 2 General System Setup (Hardware Considerations)

VDD VDD
110 o2 % PTA3/JTAG_TMS/SWD_DIO
310 ot4 PTAO/JTAG_TCLK/SWD_CLK/EZP_CLK
210 ofd PTA2/JTAG_TDO/TRACE_SWO/EZP_DO
710 o8 PTA1/JTAG_TDI/EZP_DI
PTA4/EZP_CS_b 216 oo RESET b
TARGET POWER (5V) 1115 ol PTA6/TRACE_CLKOUT
TARGET POWER (5V) 1315 o}l PTAL0/TRACE_DO
1515 ot PTA9/TRACE_D1
1715 o}l PTA8/TRACE_D2
1915 o2 PTA7/TRACE_D3

Figure 2-7. 20-pin debug interface

VDD VDD

i PTA3/JTAG_TMS/SWD_DIO

1[5 ok

310 ot PTAO/ITAG_TCLK/EZP_CLK

210 oL PTA2/JTAG_TDO/TRACE_SWO/EZP_DO

10 o8 PTA1/JTAG_TDI/EZP_DI
PTA4/EZP_CS_b 215 oL RESET b

Figure 2-8. 10-pin debug interface

The debug signals are multiplexed with general purpose I/O pins, so some signals will
require proper biasing to select the operating mode. The JTAG_TMS signal on PTA3
requires a strong pullup resistor for mode selection. The Cortex Debug specification
recommends that the JTAG_TCLK and JTAG_TDI pins (on PTAO and PTAT) have pull
resistors (high or low) to force a known state on these debug input pins. Note that the
RESET_b signal in the debug interface is the MCU’s reset pin and not the JTAG_TRST
signal. The connectors for this interface are keyed dual row 0.050” centered headers.
When implementing either of these headers on a target system, pin 7 must be depopulated
to use the 19-pin or 9-pin adapters from the debug tool. The Samtec part numbers for
these connectors are:

* FTSH-110-01-L-DV-K — 20-pin keyed connector
e FTSH-105-01-L-DV-K — 10-pin keyed connector

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 35

Other module hardware considerations

* FTSH-110-01-L-DV — 20-pin connector, no key
* FTSH-105-01-L-DV — 10-pin connector, no key

This interface is useful during the development phase of a project. The header may not
need to be populated in the production phase of the project, but the PCB pads should be
kept available for future debugging purposes.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
36 Freescale Semiconductor, Inc.

Chapter 3
Nested Vector Interrupt Controller (NVIC)

3.1 NVIC

3.1.1 Overview

This chapter shows how the NVIC is integrated into the Kinetis MCUs and how to
configure it and set-up module interrupts. It also demonstrates the steps to set the

interrupts for the desired peripheral and how to locate the vector table from flash to
RAM.

3.1.1.1 Introduction

The NVIC is a standard module on the ARM Cortex M series. This module is closely
integrated with the core and provides a very low latency for entering an interrupt service
routine ISR (12 cycles) and exiting an ISR (12 cycles).

The NVIC provides 16 different interrupt priorities. Priority O is the highest and the
lowest is15. This can be used to control which interrupt must be serviced. For example,
on a motor-control application if a UART and a timer interrupt occur at the same time,
serving the timer interrupt that moves the motor is more critical than the UART interrupt

that just received a character. In this case, the timer priority must be set higher than the
UART.

3.1.1.2 Features

On Kinetis MCUs the NVIC provides up to 120 interrupt sources including 16 that are
core specific. It also implements up to 16 priority levels that are fully programmable. The
NVIC uses a vector table to manage the interrupts. This vector table can be stored in
either flash or RAM, depending on the application.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 37

NVIC
Table 3-1. Core exceptions
Address |Vector | IRQ |Source module |Source description
ARM Core System Handler Vectors
0x0000_0000 0 — ARM core Initial stack pointer
1 — ARM core Initial program Counter
2 — ARM core NMI
3 — ARM core Hard fault
4 — ARM core Memory manage fault
5 — ARM core Bus fault
6 — ARM core Usage fault
11 — ARM core SvCall
12 — ARM core Debug monitor
14 — ARM core Pendable request for system service
15 — ARM core System tick timer

3.1.2 Configuration examples

The NVIC is easy to configure. Two examples are shown in this section. The first
example shows how to configure the NVIC for a module. The low power timer (LPTMR)
1s used as the base for this example. The second example shows how to locate the vector
table from the flash to RAM.

3.1.2.1 Configuring the NVIC

Configuring the NVIC for the specific module involves writing three registers:
NVICSERx (NVIC Set Enable Register), NVICCPRx (NVIC Clear Pending Register),
and NVICIPxx (NVIC Interrupt Priority). After the NVIC is configured and the desired
peripheral has its interrupts enabled, the NVIC serves any pending request from that
module by going to the module's ISR.

3.1.2.1.1 Code example and explanation

This example shows how to set up the NVIC for a specific module. In this case the
LPTMR is used.

The steps to configure the NVIC for this module are:

1. Identify the vector number and the IRQ number of the module from the vector table
in the device-specific reference manual in the section Interrupt Channel
Assignments. For the LPTMR the vector is 101.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

38 Freescale Semiconductor, Inc.

4
Chapter 3 Nested Vector Interrupt Controller (NVIC)

Table 3-2. LPTMR

vector
Address Vector IRQ Source Module Source
Description
0x0000_018C 99 83 TSI Single interrupt
Source
0x0000_0190 100 84 MCG
0x0000_0194 101 85 LPTMR

2. Determine which NVICSERX register contains the IRQ. Each NVICSERX register
contains 32 IRQs. Therefore, the NVICSERO can enable from IRQ 0 to IRQ 31, the
NVICSERI1 from IRQ 32 to IRQ 63, and NVICSER?2 from IRQ 64 to IRQ 95. For
this example, the NVICSER?2 is used because the LPTMR IRQ is 85. The
NVICCPRXx takes on the same number, in this case NVICCPR2.

3. To know which bit to set perform a modulo operation to obtain the remainder by 32
of the IRQ number. This number is used to enable the interrupt on NVICSER?2 and to
clear the pending interrupts from NVICCPR2.

Example:
LPTMR BIT = 85 mod 32
LPTMR BIT =21
4. At this point, the interrupt for the LPTMR can be configured:

NVICICPR2|=(1<<21); //Clear any pending interrupts on LPTMR
NVICISER2|=(1<<21); //Enable interrupts from LPTMR module

5. Next, set the interrupt priority level. This is application dependent. On Kinetis MCUs
there are 16 different priority levels. To set the priority, write to the NVICIPxx
register, the “xx” represents the IRQ number, in this example, NVICIP85. Note the
most significant nibble is used to set-up the priority, the lower nibble is reserved and
reads as zero. The LPTMR example sets the priority to 3:

NVICIP85 = 0x30; //Set Priority 3 to the LPTMR module

6. After the NVIC registers are set-up, finish the peripheral configuration that must
enable the interrupt.

7. In the ISR, clear the peripheral interrupt flag to avoid re-entrance. For this example:

void vEnLPTMR_ISR (void)

LPTMRO CSR|=LPTMR_CSR TCF MASK; //Clear LPTMR Compare flag
/*ISR code goes here*/

}

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 39

A
NVIC

3.1.2.2 Relocating the vector table

Some applications need the vector table to be located in RAM. For example in an RTOS
implementation, the vector table needs to be in RAM, this allows the Kernel to install
ISRs by modifying the vector table during runtime.

The NVIC provides a simple way to reallocate the vector table, for this purpose the user
needs to set up the Vector Table Offset Register (VTOR) with the address offset for the
new position. Use the bit TBLBASE[29] to indicate the table is either on RAM with 1 or
flash with 0 and the TBLOFF][28:7] to indicate the address offset for the table.

The Cortex-M4 assumes the RAM starts at 0x20000000 and expects the vector table to be
stored in that address if the VTOR TBLBASE[29] bit is set. Because the Kinetis MCU
family RAM starts at 0x1fff0000, this bit must be cleared.

If the vector table is planned to be stored in RAM, you must the table copy from the flash
to RAM. Also note that in some low power modes, a portion of the RAM will not be
powered, which can lead to a vector table corruption. In this case, locate the vector table
in the flash prior to entering a low power mode.

3.1.2.2.1 Code example and explanation
The vector table is usually in flash after reset, This indicates that moving the table from
flash to RAM is the most common action. To achieve this, two steps must be performed:
1. Copy from flash to RAM the entire vector table. The linker command file labels are
useful in this step. This is what the code looks like:

/*Address for VECTOR TABLE and VECTOR RAM come from the linker filex*/

extern uint32 _ VECTOR_TABLE[] ;
extern uint32 _ VECTOR_RAMI] ;

/* Copy the vector table to RAM */
if (_ VECTOR RAM != _ VECTOR TABLE)

{

for (n = 0; n < 0x410; n++)
__ VECTOR_RAM[n] = VECTOR TABLE[n];

}
2. After the table has been copied, set the proper offset for the VTOR register:

/* Set the VTOR to be on RAM */
SCB_VTOR = __ VECTOR_RAM;

It is important to follow the above mentioned steps in the order indicated. This ensures
there 1s always a valid vector table.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

40 Freescale Semiconductor, Inc.

4
Chapter 3 Nested Vector Interrupt Controller (NVIC)

3.1.2.3 Disabling priorities

There are applications with important code where just certain interrupt priorities are
allowed to interrupt, this is because these interrupts are more critical to the application. In
other cases, all the interrupts need to be disabled to ensure the code is atomic, for
example, a context switch on Operating Systems. The Cortex M4 provides the BASEPRI
register that allows disabling lower interrupt priorities from any priority you choose or
the option of disabling them all.

The BASEPRI is used as the NVICIPxx register. Therefore, 16 interrupt priorities can be
masked and only the most significant nibble is used.

Please note that BASEPRI does not disable any of the fixed priority exceptions as Reset
(priority -3), a non-maskable interrupt (NMI) (priority -2), and Hard Fault (priority -1).

BASEPRI can be set only in privilege mode. The reset value is 0x00, therefore all
interrupts are enabled.

3.1.2.3.1 Code example and explanation
To set up BASEPRI a function from your development tools can be used. For example in
IAR tools, the function is called __set BASEPRI.
1. For disabling lower interrupt priorities set the lowest priority level that the
application allows. For example, priority 5 — 0 are allowed. BASEPRI must take the
priority 5.

/* Disable interrupts priorities from 0x06 - 0x0F */
__set BASEPRI (0x50) ;

2. For disabling all priorities to ensure atomic code, the BASEPRI must take the
maximum priority value available, for Kinetis MCUs which is priority 15

/* Disable all interrupt priorities */
__set BASEPRI (0XF0) ;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 41

NVIC

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

42 Freescale Semiconductor, Inc.

Chapter 4
Clocking System

4.1 Clocking

4.1.1 Overview

This chapter will demonstrate how to configure the Clocking System and the
Multipurpose Clock Generator (MCG) module in various modes that a typical application
may require. The examples will show how to enable the on-chip PLL for high-speed
operation and how to move backwards and forwards between using the PLL and a low
power/low speed mode for entering very low power run mode (VLPR). Also, an example
is provided of how to configure the frequency-locked loop (FLL) as the main system
clock source, using the RTC oscillator as the reference clock.

4.1.2 Features

The clocking system is summarized in Figure 4-1.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
Freescale Semiconductor, Inc. 43

Clocking

MCG

Fast IRC

Slow IRC

SIM

MCGIRCLK

MCGFFCLK

¥

Clock options for
some peripherals

OUTDIV1 Core / system clocks

®—|ouTDIV2 —-—> Bus clock
[\ _’I ™ MCGOUTCLK = FloxBus clock
9—ouTniva—{cGl—— FlexBus cloc
PLL Py
—OUTDIV4—E—> Flash clock
EDE MCGFLLCLK \ cq|
MCGPLLCLK) MCGPLLCLK/ \
MCGFLLCLK g
[e]
System oscillator e
o =2
2 m
EXTAL > 25
(]
XTAL_CLK OSCERCLK = £
osc °3
XTAL XF— logic 0SC32KCLK |—’\ ERCLK32K §
N))
RTC oscillator PMC
. LPO
EXTAL32 X— OSC logic PMC logic ———)
XTAL32 X—

Real-time clock
CG — Clock gate

Figure 4-1. Clock distribution diagram

The system level clocks are provided by the MCG. The MCG consists of:

* Two individually trimable internal reference clocks (IRC), a slow IRC with a
frequency of ~32 kHz and a fast IRC with a frequency of ~4 MHz (with a fixed
divide by 2).

* Frequency locked loop (FLL) using the slow IRC or an external source as the
reference clock.

* Phase locked loop (PLL) using an external source as the reference clock.

* Auto trim machine (ATM) to allow both of the IRCs to be trimmed to a custom
frequency using an externally-generated reference clock.

The clocks provided by the MCG are summarized as follows:

* MCGOUTCLK - this is the main system clock used to generate the core, bus, and
memory clocks. It can be generated from one of the on-chip reference oscillators, the
on-chip crystal/resonator oscillator, an externally generated square wave clock, the
FLL, or the PLL.

* MCGFLLCLK - this is the output of the FLL and is available any time the FLL is
enabled.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

44 Freescale Semiconductor, Inc.

4
Chapter 4 Clocking System

* MCGPLLCLK - this is the output of the PLL and is available any time the PLL is
enabled.

* MCGIRCLK - this is the output of the selected IRC. The selected IRC will be
enabled whenever this clock is selected.

* MCGFFCLK - this is either the slow IRC or the external clock source divided by the
FLL external reference divider (FRDIV). This clock is available in all modes except
FLL bypassed internal (FBI) and bypassed low power internal (BLPI) when the slow
IRC is selected. The source of this clock is selected by the value of the internal
reference select bit (IREFS).

In addition to the clocks provided by the MCG, there are three other system level clock
sources available for use by various peripheral modules:
* OSCERCLK - this is the clock provided by the system oscillator and is the output of
the oscillator or the external square wave clock source.
* ERCLK32K - this is the output of the RTC oscillator or the system oscillator if it is
set to provide a 32 kHz clock in low power mode.
* LPO - this is the output of the low power oscillator. It is an on-chip, very low power
oscillator with an output of approximately 1 kHz that is available in all run and low
power modes.

4.1.3 Configuration examples

The MCG can be configured in one of several modes to provide a flexible means of
providing clocks to the system for a wide range of applications. Some of the more
commonly used modes are described in the following configuration examples.

After exiting reset, or recovering from a very low leakage state, the MCG will be in FLL
engaged internal (FEI) mode with MCGCLKOUT at 20.97 MHz, assuming a factory
trimmed slow IRC frequency of 32.768 kHz. If a different MCG mode is required, the
MCG can be transitioned to that mode under software control.

Although not included in the sample code, you should include a “timeout” mechanism
when checking the status bits within the MCG. After making changes to clock selection
bits, enabling the oscillator or the PLL, the appropriate status bits should be verified
before continuing. If for some reason the bit being checked does not update, the “while
loop” will never exit unless a timeout mechanism is used. A timeout counter should be
started before checking the status bits. This counter must then be stopped and reset after
the loop exits. If a timeout is generated, a decision can be made about what to do
depending on the status bits that failed to update. For example, if the oscillator does not
start due to a damaged PCB trace, the decision to continue with an internal-only clocking
mode can be made with an appropriate indication to the user or a central monitoring
station.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 45

A ————
Clocking

4.1.3.1 Transitioning to PLL engaged external mode

PLL engaged external mode uses an external clock, from either the crystal oscillator or an
externally generated square wave, as the reference for the on-chip PLL. An on-chip
divider allows an external clock to provide the reference clock to the PLL within the
required range of 2—4 MHz. The PLL provides the most accurate clock source for
frequencies greater than can be generated by an external source. In this example, an 8
MHz crystal is used to generate a 96 MHz system clock. The system clock dividers are
set to allow the maximum system performance with this clock source. The PLL
frequency can be divided down to provide the USB clock of 48 MHz. The MCG is
configured to minimize PLL jitter (maximum PLL frequency with the minimum
multiplication factor).

4.1.3.1.1 Code example and explanation

// If the internal load capacitors are being used, they should be selected
// before enabling the oscillator. Application specific. 16 pF and 8 pF selected
// in this example
0SC_CR = OSC_CR _SC16P MASK | OSC_CR SC8P MASK;
// Enabling the oscillator for 8 MHz crystal
// RANGE=1, should be set to match the frequency of the crystal being used
// HGO=1, high gain is selected, provides better noise immunity but does draw
// higher current
// EREFS=1, enable the external oscillator
// LP=0, low power mode not selected (not actually part of osc setup)
// IRCS=0, slow internal ref clock selected (not actually part of osc setup)
MCG C2 = MCG C2 RANGE(1) | MCG C2 HGO MASK | MCG _C2 EREFS MASK;

// Select ext oscillator, reference divider and clear IREFS to start ext osc

// CLKS=2, select the external clock source

// FRDIV=3, set the FLL ref divider to keep the ref clock in range

// (even if FLL is not being used) 8 MHz / 256 = 31.25 kHz

// IREFS=0, select the external clock

// IRCLKEN=0, disable IRCLK (can enable it if desired)

// IREFSTEN=0, disable IRC in stop mode (can keep it enabled in stop if desired)
MCG Cl = MCG_Cl_CLKS(2) | MCG_Cl FRDIV(3);

// wait for oscillator to initialize
while (! (MCG S & MCG S OSCINIT MASK)) {}

// wait for Reference clock to switch to external reference
while (MCG S & MCG S IREFST MASK) {}

// Wait for MCGOUT to switch over to the external reference clock
while (((MCG S & MCG S CLKST MASK) >> MCG S CLKST SHIFT) != 0x2){}

// Now configure the PLL and move to PBE mode
// set the PRDIV field to generate a 4 MHz reference clock (8 MHz /2)
MCG _C5 = MCG_C5 PRDIV(1); // PRDIV=1 selects a divide by 2

// set the VDIV field to 0, which is x24, giving 4 x 24 = 96 MHz

// the PLLS bit is set to enable the PLL

// the clock monitor is enabled, CME=1 to cause a reset if crystal fails
// LOLIE can be optionally set to enable the loss of lock interrupt

MCG _C6 = MCG_C6_CME MASK | MCG_C6 PLLS MASK;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

46 Freescale Semiconductor, Inc.

L __4
Chapter 4 Clocking System

// wait until the source of the PLLS clock has switched to the PLL

while (! (MCG S & MCG S PLLST MASK)) {}
// wait until the PLL has achieved lock
while (! (MCG S & MCG S LOCK MASK)) {}

// set up the SIM clock dividers BEFORE switching to the PLL to ensure the
// system clock speeds are in spec.
// core = PLL (96 MHz), bus = PLL/2 (48 MHz), flexbus = PLL/2 (48 MHz), flash = PLL/4 (24
MHz)
SIM CLKDIV1 = SIM CLKDIV1 OUTDIV1(0) | SIM CLKDIV1 OUTDIV2 (1)
| SIM CLKDIV1_OUTDIV3 (1) | SIM_CLKDIV1_OUTDIV4 (3);

// Transition into PEE by setting CLKS to 0
// previous MCG_Cl settings remain the same, just need to set CLKS to 0
MCG Cl &= ~MCG_Cl CLKS MASK;

// Wait for MCGOUT to switch over to the PLL
while (((MCG_S & MCG S _CLKST MASK) >> MCG_S_ CLKST SHIFT) != 0x3){}

// The USB clock divider in the System Clock Divider Register 2 (SIM_CLKDIV2)
// should be configured to generate the 48 MHz USB clock before configuring
// the USB module.

SIM CLKDIV2 |= SIM CLKDIV2 USBDIV(l); // sets USB divider to /2 assuming reset
// state of the SIM CLKDIV2 register

4.1.3.2 Transitioning between PLL engaged external mode and
bypassed low power internal mode

To be able to move the MCU into the VLPR (or wait) mode, the MCG must be set in a
low-power, low-frequency mode with MCGCLKOUT <= 2 MHz. This mode is provided
by means of selecting the fast IRC when the MCG is set in BLPI mode. This example
shows how to move to this clock mode from PLL engaged external mode before entering
VLPR and then returns to that mode after VLPR is exited. In VLPR mode, the system
clock dividers cannot be changed. These dividers should be configured when the MCG is
in BLPI mode before the MCU power mode is changed to VLPR.

4.1.3.2.1 Code example and explanation

// Moving from PEE to BLPI
// first move from PEE to PBE

MCG Cl |= MCG Cl CLKS(2); // select external reference clock as MCG OUT
// Wait for clock status bits to update indicating clock has switched
while (((MCG S & MCG S CLKST MASK) >> MCG S CLKST SHIFT) != 0x2){}

// now move to FBE mode

// make sure the FRDIV is configured to keep the FLL reference within spec.
MCG Cl &= ~MCG_Cl FRDIV MASK; // clear FRDIV field
MCG C1 |= MCG Cl FRDIV(3); // set FLL ref divider to 256

MCG _C6 &= ~MCG_C6 PLLS MASK; // clear PLLS to select the FLL

while (MCG S & MCG_S_PLLST MASK){} // Wait for PLLST status bit to clear to
// indicate switch to FLL output
// now move to FBI mode
MCG_C2 |= MCG _C2_ IRCS_MASK; // set the IRCS bit to select the fast IRC
// set CLKS to 1 to select the internal reference clock
// keep FRDIV at existing value to keep FLL ref clock in spec.
// set IREFS to 1 to select internal reference clock
MCG_Cl = MCG _Cl_CLKS(1l) | MCG Cl_FRDIV(3) | MCG_Cl_IREFS_ MASK;
// wait for internal reference to be selected

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 47

Clocking
while (! (MCG_S & MCG_S_IREFST MASK)) {}
// wait for fast internal reference to be selected
while (! (MCG S & MCG S IRCST MASK)) {}
// wait for clock to switch to IRC
while (((MCG_S & MCG_S_CLKST MASK) >> MCG S _CLKST SHIFT) != 0x1){}
// now move to BLPI
MCG C2 |= MCG C2 LP MASK; // set the LP bit to enter BLPI

// set up the SIM clock dividers BEFORE switching to VLPR to ensure the
// system clock speeds are in spec. MCGCLKOUT = 2 MHz in BLPI mode
// core = 2 MHz, bus = 2 MHz, flexbus = 2 MHz, flash = 1 MHz
SIM CLKDIV1 = SIM CLKDIV1 OUTDIV1(0) | SIM CLKDIV1 OUTDIV2 (0)
| SIM CLKDIV1_ OUTDIV3(0) | SIM CLKDIV1 OUTDIV4 (1) ;

Now that MCGCLKOUT is at 2 MHz, the MCU VLPR power mode may be selected.
Refer to the power management controller for details on this. When the MCU transitions
back to normal run mode, the MCG will still be configured in BLPI mode. The MCG is
then configured in PLL engaged external mode by means of software as follows:

// Moving from BLPI to PEE
// first move to FBI
MCG _C2 &= ~MCG C2 LP MASK; // clear the LP bit to exit BLPI
// move to FBE
// clear IREFS to select the external ref clock
// set CLKS = 2 to select the ext ref clock as clk source
// 1t is assumed the oscillator parameters in MCG _C2 have not been changed

MCG C1 = MCG C1 CLKS(2) | MCG C1 FRDIV(3);
// wait for the oscillator to initialize again
while (! (MCG_S & MCG_S OSCINIT MASK)) {}

// wait for Reference clock to switch to external reference
while (MCG S & MCG_S_IREFST MASK) {}
// wait for MCGOUT to switch over to the external reference clock
while (((MCG S & MCG S CLKST MASK) >> MCG S CLKST SHIFT) != 0x2){}
//configure PLL and system clock dividers as FEI to PEE example
MCG C5 = MCG_C5 PRDIV(1);
MCG C6 = MCG_C6 PLLS MASK;
while (! (MCG_S & MCG_S_ PLLST MASK)) {}
while (! (MCG_S & MCG_S LOCK MASK)) {}
// configure the clock dividers back again before switching to the PLL to ensure the system
// clock speeds are in spec.
// core = PLL (96 MHz), bus = PLL/2 (48 MHz), flexbus = PLL/2 (48 MHz), flash = PLL/4 (24
MHzZ)

SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM CLKDIV1_ OUTDIV2 (1)

| SIM CLKDIV1_OUTDIV3 (1) | SIM CLKDIV1_OUTDIV4 (3);
MCG_Cl &= ~MCG_Cl_CLKS_MASK;
while (((MCG_S & MCG S _CLKST MASK) >> MCG_S_CLKST SHIFT) != 0x3){}

4.1.3.3 Configuring the FLL with the RTC oscillator as a reference

The MCG can generate all the system clocks using the FLL with the RTC oscillator being
used as the reference for it. This has the benefit that an accurate reference clock can be
used without the cost of additional external components in an application where the RTC
1s already being used.

4.1.3.3.1 Code example and explanation

// Using the RTC OSC as Ref Clk

// Configure and enable the RTC 0SC

// select the load caps (application dependent) and the oscillator enable bit
Kinetis Quick Reference User Guide, Rev. 2, 08/2012

48 Freescale Semiconductor, Inc.

L __4
Chapter 4 Clocking System

// note that other bits in this register may need to be set depending on the intended use of
the RTC
RTC CR |= RTC_CR SC16P MASK | RTC_CR SC8P MASK | RTC_CR OSCE_MASK;

time_delay ms(1000); // wait for the RTC oscillator to initialize
// select the RTC oscillator as the MCG reference clock
SIM SOPT2 |= SIM SOPT2 MCGCLKSEL MASK;

// ensure MCG _C2 is in the reset state, key item is RANGE = 0 to select the correct FRDIV
factor
MCG_C2 = 0x0;

// Select the Reference Divider and clear IREFS to select the osc

// CLKS=0, select the FLL as the clock source for MCGOUTCLK

// FRDIV=0, set the FLL ref divider to divide by 1

// IREFS=0, select the external clock

// IRCLKEN=0, disable IRCLK (can enable if desired)

// IREFSTEN=0, disable IRC in stop mode (can keep it enabled in stop if desired)
MCG_Cl = 0xO0;

// wait for Reference clock to switch to external reference
while (MCG_S & MCG_S IREFST MASK) {}

// Wait for clock status bits to update
while (((MCG_S & MCG_S_CLKST MASK) >> MCG_S_CLKST SHIFT) != 0x0) {}

// Can select the FLL operating range/freq by means of the DRS and DMX32 bits

// Must first ensure the system clock dividers are set to keep the core and

// bus clocks within spec.

// core = FLL (48 MHz), bus = FLL (48 MHz), flexbus = PLL (48 MHz), flash = PLL/2 (24 MHz)

SIM CLKDIV1 = SIM CLKDIV1 OUTDIV1(O0) | SIM CLKDIV1 OUTDIV2(0)
| SIM CLKDIV1_OUTDIV3(0) | SIM CLKDIV1_OUTDIV4 (1) ;
// In this example DMX32 is set and DRS is set to 1 = 48 MHz from a 32.768 kHz
// crystal
MCG_C4 |= MCG_C4 DMX32 MASK | MCG _C4 DRST DRS (1) ;

4.1.4 Clocking system device hardware implementation

It is possible to provide all the system level clocks from internal sources. However, if the
PLL is to be used or an accurate reference clock is required, an external clock must be
provided. This can be from an externally generated clock source that provides a square
wave clock or it can be from an internal oscillator using an external crystal or resonator.

There are two independent on-chip crystal oscillators, one for the RTC and one to
provide a reference for the main system clocks.

The RTC clock source comes only from the dedicated RTC oscillator. In many cases, the
RTC oscillator will require only an external 32 kHz crystal. The oscillator feedback
resistor 1s integrated within the device along with selectable internal load capacitors.

The main system oscillator can be configured in various ways depending on the crystal
frequency and mode being used. Refer to the device-specific reference manual for details.
The main oscillator also has programmable internal load capacitors. When the main
oscillator is configured for low power an integrated oscillator feedback resistor is
provided.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 49

A
Clocking

The internal crystal load capacitors in both oscillators are selectable in software to
provide up to 30 pF, in 2 pF increments, for each of the EXTAL and XTAL pins. This
provides an effective series capacitive load of up to 15 pF. The parasitic capacitance of
the PCB should also be included in the calculation of the total crystal load. The
combination of these two values will often mean that no external load capacitors are
required.

If either of the main oscillator pins are not being used, they may be left unconnected in
their default reset configuration or may be used as general-purpose outputs (not inputs).

4.1.5 Layout guidelines for general routing and placement

Use the following general routing and placement guidelines when laying out a new
design. These guidelines will help to minimize electromagnetic compatibility (EMC)
problems.

* To minimize parasitic elements, surface mount components should be used where
possible
 All components should be placed as close to the MCU as possible.
* If external load capacitors are required, they should use a common ground
connection shared in the center
* If the crystal, or resonator, has a ground connection, it should be connected to the
common ground of the load capacitors
* Where possible:
* keep high-speed 10 signals as far from the EXTAL and XTAL signals as
possible
* do not route signals under oscillator components - on same layer or layer below
* select the functions of pins close to EXTAL and XTAL to have minimal
switching to reduce injected noise

4.1.6 References

The following list of application notes associated with crystal oscillators are available on
the Freescale website at www.freescale.com. They discuss common oscillator
characteristics, potential problems and troubleshooting guidelines.

* AN1706: Microcontroller Oscillator Circuit Design Considerations

e AN1783: Determining MCU Oscillator Start-Up Parameters

* AN2606: Practical Considerations for Working With Low-Frequency Oscillators
e AN3208: Crystal Oscillator Troubleshooting Guide

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
50 Freescale Semiconductor, Inc.

Chapter 5
Power Management Controller (PMC/MODECTL)

5.1 Using the power management controller

5.1.1 Overview

This section will demonstrate how to use the Power Management Controller (PMC)
module to protect the MCU from unexpected low Vpp events. References to other
protection options will also be made.

5.1.1.1 Introduction

This chapter is a brief description of the power management features of the Kinetis 32-bit
MCU.

There are three modules covered in this chapter:

* Power Management Controller (PMC)
* Mode Controller (MC)
* Low Leakage Wakeup Unit (LLWU)

5.1.2 Using the low voltage detection system

5.1.2.1 Features

The LVD features includes the protection of memory contents from brown out conditions
and the operation of the MCU below the specified VDD levels. The user has full control
over the trip voltages of two detection circuits. The first is a warning detect circuit and
the second is reset detect circuit.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
Freescale Semiconductor, Inc. 51

A
Using the low voltage detection system

As voltage falls below the warning level the LVW circuit flags the warning event and can
cause an interrupt. If the voltage continues to fall, the LVD circuit flags the detect event
and can either cause a reset or an interrupt. The user can choose what action to take in the
interrupt service routine. If a detect is selected to drive reset, the LVD circuit holds the
MCU in reset until the supply voltage rises above the detect threshold.

There are two independent POR circuits for the MCU, one for VDD and another for
VBAT. The POR circuit for the MCU will hold the MCU in reset based upon the VDD
voltage. The POR circuit for VBAT will reset both the RTC and OSC2 modules, but will
not reset the MCU. If VBAT supply is not present, then accesses to the RTC registers
may not occur and could result in a core-lockup type reset in the MCU.

5.1.2.2 Configuration examples

LVD and LVW initialization code is given below: Notice the comments describing the
chosen settings. You should select the statement options for your application. The NVIC
vector flag may be set and should be cleared. The Interrupt is enabled in the NVIC in this
initialization.

void LVD Init (void)
{ /* setup LVD
Low-Voltage Detect Voltage Select
Selects the LVD trip point voltage (VLVD).
00 Low trip point selected (VLVD = VLVDL)
01 High trip point selected (VLVD = VLVDH)
10 Reserved
11 Reserved

*/
/* Choose one of the following statements */
PMC_LVDSC1 |= PMC_LVDSC1 LVDRE_MASK ; //Enable LVD Reset
// PMC_LVDSC1l &= ~PMC LVDSC1l LVDRE MASK ; //Disable LVD Reset

/* Choose one of the following statements */
//PMC_LVDSC1 |= PMC LVDSC1l LVDV MASK & 0x01; //High Trip point 2.48V
PMC_LVDSC1l &= PMC_LVDSC1l LVDV_MASK & 0x00; //Low Trip point 1.54 V

/* Choose one of the following statements */
PMC_LVDSC2 = PMC_LVDSC2 LVWACK MASK | PMC_LVDSC2 LVWV (0) ;

//0b00 low trip point LVWV
PMC_LVDSC2 LVWACK MASK | PMC LVDSC2 LVWV(1);

//0b01 midl trip point LVWV
PMC_LVDSC2_ LVWACK MASK | PMC_LVDSC2 LVWV(2);

//0b01000010 mid2 trip point LVWV
PMC_LVDSC2 LVWACK MASK | PMC LVDSC2 LVWV(3);

//0b01000011 high trip point LVWV

//PMC_LVDSC2

//PMC_LVDSC2

//PMC_LVDSC2

// ack to clear initial flags

PMC LVDSCl |= PMC LVDSCl LVDACK MASK; // clear detect flag if present
PMC_LVDSC2 |= PMC_LVDSC2 LVWACK MASK; // clear warning flag if present
/*

LVWV if LVDV high range selected

Low trip point selected (VLVW = VLVW1) - 2.62

Mid 1 trip point selected (VLVW = VLVW2) - 2.72

Mid 2 trip point selected (VLVW = VLVW3) - 2.82

High trip point selected (VLVW = VLV4) - 2.92
LVWV if LVDV low range selected

Low trip point selected (VLVW = VLVW1) - 1.74

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

52 Freescale Semiconductor, Inc.

4
Chapter 5 Power Management Controller (PMC/MODECTL)

Mid 1 trip point selected (VLVW VLVW2) - 1.84
Mid 2 trip point selected (VLVW VLVW3) - 1.94
High trip point selected (VLVW = VLV4) - 2.04

*/
NVICICPRO|=(1<<20) ; //Clear any pending interrupts on LVD
NVICISERO |=(1<<20) ; //Enable interrupts from LVD module

5.1.2.3 Interrupt code example and explanation

The LVD circuitry can be programmed to cause an interrupt. You should create a service
routine to clear the flags and react appropriately. An example of such an interrupt service
routine is given. Notice the NVIC module references. This clearing is redundant if the
module clearing is done correctly.
void pmec_1lvd isr(void) {

printf ("\rPMC LVD ISR entered** ");

if (PMC_LVDSC2 & PMC_LVDSC2_ LVWF_MASK)
PMC_LVDSC2 |= PMC_LVDSC2 LVWACK MASK;

if (PMC_LVDSC1 & PMC_LVDSC]._LVDF_MASK)
PMC LVDSC1 |= PMC_LVDSC1 LVDACK MASK;
NVICICPRO|=(1<<20) ; //Clear any pending interrupts on LVD

}

5.1.2.4 Hardware implementation

RESET PIN: The reset pin is driven out if the internal circuitry detects a reset. This is
true for all resets, including a reset that causes a recovery from the VLLSx modes. Since
these could be warm starts, customers who do want not their external circuitry reset do
not want to connect external circuitry to the MC reset pin.

VDD: The Vdd supply pins can be driven between 1.71 V and 3.6 V DC.

VBAT: The VBAT supply pins can be driven independently from VDD but should be
powered up to at least VBATmin. Since there is no equivalent LVD circuitry for the
VBAT supply, the VBAT minimum is the POR release point [POR max = 1.5 V].
External bypass capacitors should be supplied.

XTAL32 and EXTAL32: Connected to a secondary watch crystal for supplying clock to
the RTC module. No load capacitors or bias resistor is required as these are supplied
internally.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 53

Using the mode controller

5.2 Using the mode controller

5.2.1 Overview

This section will demonstrate how to use the Mode Controller (MC). The MC is
responsible for controlling the entry and exit from all of the run, wait and stop modes of
the MCU. This module works in conjunction with the PMC and the LLWU to wakeup the
MCU and move between power modes.

5.2.1.1 Introduction
There are 10 power modes. They are described below.

1. Run — Default Operation of the MCU out of Reset, On-chip voltage regulator is On,
full capability.

2. Wait — ARM core enters Sleep Mode, NVIC remains sensitive to interrupts,
Peripherals Continue to be clocked.

3. Stop — ARM core enters DeepSleep Mode, NVIC is disabled, WIC is used to wake
up from interrupt, peripheral clocks are stopped.

4. Very Low Power Run(VLPR) — On chip voltage regulator is in a mode that supplies
only enough power to run the MCU in a reduced frequency. Core and Bus frequency
limited to 2 MHz.

5. Very Low Power Wait(VLPW) — ARM core enters Sleep Mode, NVIC remains
sensitive to interrupts (FCLK = ON), On chip voltage regulator is in a mode that
supplies only enough power to run the MCU at a reduced frequency.

6. Very Low Power Stop(VLPS) — ARM core enters DeepSleep Mode, NVIC is
disabled (FCLK = OFF), WIC is used to wake up from interrupt, peripheral clocks
are stopped, On chip voltage regulator is in a mode that supplies only enough power
to run the MCU at a reduced frequency, all SRAM is operating (content retained and
I/0O states held).

7. Low leakage stop(LLS) — ARM core enters DeepSleep Mode, NVIC is disabled,
LLWU is used to wake up, peripheral clocks are stopped, all SRAM is operating
(content retained and 1/0O states held), most of peripheral are in state retention mode
(cannot operate).

8. Very low leakage stop3(VLLS3) — ARM core enters SleepDeep Mode, NVIC is
disabled, LLWU is used to wake up, peripheral clocks are stopped, all SRAM is
operating (content retained and I/O states held), most modules are disabled.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

54 Freescale Semiconductor, Inc.

L __4
Chapter 5 Power Management Controller (PMC/MODECTL)
9. Very low leakage stop 2(VLLS2) — ARM core enters SleepDeep Mode, NVIC is

disabled, LLWU is used to wake up, peripheral clocks are stopped, Only portion of
SRAM is operating (content retained and I/O states held), most modules are disabled.

10. Very low leakage stop 1(VLLS1) — Lowest Power Mode ARM core enters
SleepDeep Mode, NVIC is disabled, LLWU is used to wake up, peripheral clocks are
stopped, All SRAM is powered down and I/O states held), most modules are
disabled, only two 32-byte register file modules retained and I/O states held.

The modules available in each of the power modes is a described in a table. Please see
Module operation in low power modes for the details of the module operations in the
each of the low power modes.

5.2.1.2 Features

Mode Control controls entry into and exit from each of the power modes.

5.2.2 Configuration examples

How you decide which modes to use in your solution is an exercise in matching the
requirements of your system, and selecting which modules are needed during each mode
of the operation for your application. The best way to explain would be to work through
an example.

For example, consider the case of a battery-operated human interface device that requires
a real-time clock timebase. It will wake up every second, update the time of day, and
check the conditions of several sensors. Then it will take action based upon the state and,
when requested, perform high levels of computation to control the operation of a device.
After reviewing the power modes table in Module operation in low power modes, you
should be able to identify which of the modules are functioning in each of the low power
modes.

At this point in this example, notice that the RTC, the segment LCD, the TSI and the
comparator are among a few modules that are fully functional in several of the lowest
power modules.

In this example system, the MCU would spend most of the time in one of the lowest
power modes waking up every second to update the time of day variables and update the
display, plus other house-keeping tasks.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 55

A
Using the mode controller

The MCU could also wakeup from a user input. This could be hitting a button, a touch of
a capacitive sensor, the rise or fall of an analog signal from a sensor feeding the
comparator. To enable these sources please refer to the LLWU section 3 for configuration
details.

The example codes for MC are available from the Freescale Web site
www.freescale.com.

5.2.2.1 MC code example and explanation

There are two registers in the mode controller: the PMPROT register and the Power
Management Protection register. This is a write once register after a reset. This means
that once written all subsequent writes are ignored. In our example system above, our two
basic modes of operation are run mode and LLS mode. If we do not want the MCU to be
in any other low power mode we would want to write the ALLS bit in the PMPROT
register.

MC_PMPROT = MC_PMPROT ALLS MASK;

This write allows the MCU to enter LLS only. It is then no longer possible to enter any
other low power mode.

Once the PMPROT register has been written, the write to the PMCTRL control register
sets the mode entry and exit selection. For our example, entry into LLS mode would be
enabled with this write.

MC_PMCTRL = MC_PMCTRL LPLLSM(0x3)) ; // set LPLLSM = 0bll

5.2.2.2 Entering low leakage stop (LLS) mode

Once the previous two setup steps have been done the low power stop mode would be
entered with a write to the SCR register in the core control logic to set the SLEEPDEEP
bit.

SCB_SCR |= SCB_SCR_SLEEPDEEP_ MASK;

When the WFI instruction is executed the mode controller will step through the low
power entry state machine making sure all of the modules are ready to enter the low
power mode. If, for instance the UART is finishing a serial transmission it would hold off
the entry into the LLS until the transmission was completed. In C the syntax to execute
the core instruction WFI is:

asm("WFI") ;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

56 Freescale Semiconductor, Inc.

4

Chapter 5 Power Management Controller (PMC/MODECTL)
This statement can be placed anywhere in the code and once execute the MCU will enter
the selected low power mode. It takes approximately 1 microsecond to enter the low
power mode.

5.2.2.3 Entering wait mode

If you want to use WAIT mode, then the SLEEPDEEP bit needs to be cleared before
executing the WFI instruction.

SCB_SCR &= ~SCB_SCR_SLEEPDEEP MASK;

5.2.2.4 Exiting low power modes

Each of the power modes has a specific list of exit methods. In general an enabled
interrupt from a pin, an enabled module trigger, or a reset will exit the low power modes
and return to RUN or VLPR mode. These exit methods are discussed in Section 3 on the
LLWU.

Recovery from VLLSx is through the wakeup reset event. The MCU will wake from
VLLSx by means of reset, an enabled pin, or an enabled module. See table 3-12, "LLWU
inputs," in the LLWU configuration section for a list of the sources. The wakeup flow
from VLLSI, 2, and 3 is through reset. The wakeup bit in the SRS registers is set,
indicating that the MCU is recovering from a low power mode. Code execution begins
but the I/O are held in the pre-low-power mode entry state and the oscillator is disabled
(even if EREFSTEN had been set before entering VLLSx). The user is required to clear
this hold by writing to the ACKISO bit in the LLWU_CS register.

Prior to releasing the hold the user must re-initialize the I/O to the pre-low-power mode
entry state, so that unwanted transitions on the I/O do not occur when the hold is released.
The oscillator cannot be re-enabled before the ACKISO bit is cleared and must be
reconfigured after the acknowledge write has been done.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 57

Using the low leakage wakeup unit

5.3 Using the low leakage wakeup unit

5.3.1 Overview

This section will demonstrate how to use the Low Leakage Wakeup Unit (LLWU). The
LLWU is responsible for selecting and enabling the sources of exit from all of the low
power modes of the MCU. This module works in conjunction with the PMC and the
MCU to wake the MCU up.

5.3.1.1 Mode transitions

There are particular requirements for exiting form each of the 10 power modes. Please
see Mode transition requirements for a table of the transition requirements for each of the
modes of operation.

5.3.1.2 Wakeup sources

There are a possible 16 pin sources and up to 7 modules available as sources of wakeup.
Please see Source of wakeup, pins and modules for a table of external pin wakeup and
module wakeup sources.

5.3.2 Configuration examples

There are five 8-bit wakeup source enable registers for the pin and module source
selection, Three 8-bit wakeup flag registers to indicate which wakeup source was
triggered, and one 8-bit status and control register to control the digital filter enable for
external pins, and an acknowledge bit to allow certain peripherals and pads to release
their held low leakage state.

5.3.2.1 Module wakeup

To configure a module to wakeup the MCU from one of the low power modes requires a
study in the control and function of each of the modules capable of waking the MCU.
Since the RTC can be on in all low power mode we can configure the RTC to wake up

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

58 Freescale Semiconductor, Inc.

4

Chapter 5 Power Management Controller (PMC/MODECTL)
the system when its interrupt flag is set. To do this we need to enable the RTC module to
cause an interrupt and then allow that interrupt to cause a wakeup. To enable the RTC to
cause a wakeup the corresponding module wakeup bits must be set.

LLWU ME = LLWU ME WUMES5 MASK;

B // enable the RTC to wake up from low power modes
Other modules have to be enabled in the same way. The table in Mode transition
requirements identifies the wakeup enable bit that must be set for each module by the
number of the bit.

5.3.2.2 Pin wakeup

To configure a pin to wakeup the MCU from the low power modes requires a study of the
port configuration register controls and the GPIO functionality.

The PCR registers select the multiplex selection, the pull enable function, and the
interrupt edge selection. If we want to initialize the first wakeup pin, PTE1, as an LLWU
wakeup enabled pin we need to

1. Initialize the PCR for PTEI.
2. Make sure the pin is an input.
3. Enable PTEI as a valid wakeup source in the LLWU.

The code for this is below. This would need to be done for each of the pins you want to
enable as wakeup sources.

PORTE PCR1 = (PORT_ PCR ISF _MASK | // <clear Flag if there
PORT _PCR_MUX (01) | // GPIO
PORT PCR IRQC(0x0A) | // falling edge enable
PORT PCR_PE MASK | // Pull enable
PORT_PCR_PS_MASK) ; // pull up enable
GPIOE_POER &= OXFFFFFFFD; // set Port El as input
LLWU PE1l = LLWU PE1 WUPEO (0x02); // defining PORT El as a wakeup source for LLWU

5.3.2.3 LLWU port and module interrupts

In the low power modes the ARM core is off, the NVIC is off some of the time and the
WIC is kept alive allowing an interrupt from the pin or module to propagate to the mode
controller to indicate a wakeup request. To enable the LLWU interrupt we would replace
the default vector in the interrupt vector table with the appropriate LLWU interrupt
handler with the following sequence.
// Enable LLWU Interrupt in NVIC

VECTOR_RAM[37] (uint32)llwu_handle; // Replace ISR

ﬁGICICPRO|:(1<<21); //Clear any pending interrupts on LLWU
NVICISERO|=(1<<21); //Enable interrupts from LLWU module

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 59

Using the low leakage wakeup unit

For our example we allow the processing of the pin PTE1 we add this initialization code:

___VECTOR_RAM[107] = (uint32)porte isr; // Replace ISR
NVICICPR2|=(1<<27); //Clear pending interrputs on Port E
NVICISER2 |=(1<<27); //Enable interrupts from Port E

Then there is a need for an interrupt service routine for the LLWU and one for the port
enabled as a wakeup source.

5.3.2.4 Wakeup sequence

The wakeup sequence is not obvious for some of the modes. For most of the wait and
stop modes code execution follows a predictable flow. For LLS mode which requires the
LLWU, the LLWU vector is fetched and taken right after the wakeup event. If the
wakeup source’s interrupt flag is not cleared by the LLWU interrupt handler, then the
next interrupt vector for the wakeup source is taken and the flag in the port or module can
be cleared. Code execution then continues with the instruction following the WFI
instruction that sent the MCU into the low power mode.

For VLLS1, VLLS2, or VLLS3, the exit is always through the reset vector and then
through the interrupt vector of the LLWU. There is a WAKEUP bit in the SRS register
that allows the user to tell if the reset was due to an LLWU wakeup event.

An example of wakeup test code is shown here.

if (MC_SRSL & MC_SRSL WAKEUP MASK) {
printf (" [outSRS]Pin Reset wakeup from low power modes\n") ;
//The state of PMCTRL[LPLLSM] prior to clearing due to update
// of PMPROT indicates which power mode was exited and should be
// used by initialization software for proper power mode recovery.
if ((MC_PMCTRL & MC_ PMCTRL LPLLSM MASK) == 0)
printf (" [outSRS] Pin Reset wakeup from Normal Stop\n");
if ((MC_PMCTRL & MC_PMCTRL LPLLSM MASK) == 2)
printf (" [outSRS]Pin Reset wakeup from Very Low PowerStop (VLPS)\n") ;
if ((MC_PMCTRL & MC_ PMCTRL LPLLSM MASK) == 3)
printf (" [outSRS]Pin Reset wakeup from Low Leakage Stop (LLS)\n"); }

The I/0O states and the oscillator setup are held if the wakeup event is from VLLSI1,
VLLS2, or VLLS3. The user is required to clear this hold by writing to the ACKISO bit
in the LLWU_CS register. Prior to releasing the hold the user must re-initialize the I/O to

the pre-low-power mode entry state, so that unwanted transitions on the I/O do not occur
when the hold is released.

if ((LLWU _CS & LLWU CS_ACKISO MASK) == 1) {
// RE-INITIALIZE MODULES and PORT OUTPUTS HERE
LLWU CS != LLWU CS_ACKISO MASK; }

The RTC may be powered by a separate power source and therefore would not need to
re-initialized. A simple check of the state of the RTC registers to see if they are already
enabled would work.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

60 Freescale Semiconductor, Inc.

4
Chapter 5 Power Management Controller (PMC/MODECTL)

5.4 Module operation in low power modes
Table 5-1. Module operation in low power modes

Module STOP VLPR VLPW VLPS LLS VLLSx
EzPort Disabled Disabled Disabled Disabled Disabled Disabled
SDHC Wakeup FF FF Wakeup Static OFF
GPIO Wakeup FF FF Wakeup Static, pins OFF, Pins

Latched Latched
FlexBus Static FF FF Static Static OFF
CRC Static FF FF Static Static OFF
RNGB Static FF Static Static Static OFF
CMT Static FF FF Static Static OFF
NVIC Static FF FF Static Static OFF
Mode Controller |FF FF FF FF FF FF
LLWU Static Static Static Static FF FF
Regulator ON Low Pwr Low Pwr Low Pwr Low Pwr Low Pwr
LVD ON Disabled Disabled Disabled Disabled Disabled
LPO(KHz) ON ON ON ON ON ON
Sys OSC ERCLK optional |ERCLK <4 MHz |ERCLK <4 MHz |ERCLK <4 MHz |Limited to low Limited to low
range range

MCG Static IRCLK 2 MHz IRC 2 MHz IRC Static-no clock |Static-no clock |OFF

optional PLL

possible
CORE CLK OFF 2 MHz max OFF OFF OFF OFF
Sys CLK OFF 2 MHz max 2 MHz max OFF OFF OFF
Bus CLK OFF 2 MHz max 2 MHz max OFF OFF OFF
FLASH Powered 1 MHz max no |Low Power Low Power OFF OFF

pgm/erase
Portion of Powered Powered Powered Powered Powered Powered in
SRAM_U VLLS3 & 2
Remaining Powered Powered Powered Powered Powered Powered in
SRAM_U and VLLS3 & 2
SRAML
FlexMemory Powered Powered Powered Powered Powered Powered in
VLLS3

Sys Reg File Powered Powered Powered Powered Powered Powered
VBAT Reg File |VBAT Powered |VBAT Powered |VBAT Powered |[MODULES VBAT Powered |VBAT Powered
DMA Static FF FF Static Static OFF
UART Static, WU 125 kbit/s 125 kbit/s Static WU Static OFF
SPI Static 1 Mbit/s 1 Mbit/s Static Static OFF
12C Static, address | 100 kbit/s 100 kbit/s Static, address | Static OFF

wu wu
CAN Wakeup FF FF Wakeup Static OFF

Table continues on the next page...

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc.

61

Mode transition requirements

Table 5-1. Module operation in low power modes (continued)

Module STOP VLPR VLPW VLPS LLS VLLSXx
12S Static FF FF Static Static OFF
Segment LCD |FF FF FF FF FF-RTC clk FF-RTC clk
TSI Wakeup FF FF Wakeup Wakeup -One |Wakeup - One

pin pin
FTM Static FF FF Static Static OFF
PIT Static FF FF Static Static OFF
PDB Static FF FF Static Static OFF
LPT FF FF FF FF FF FF
Watchdog FF FF FF FF Static OFF
EWM Static FF Static Static Static OFF
16-bit ADC ADC internal Clk |FF FF ADC internal Clk | Static OFF
CAN Wakeup FF FF Wakeup Static OFF
CMP HS or LS FF FF HS or LS LS LS
6-bit DAC Static FF FF Static Static Static
VREF FF FF FF FF Static OFF
OPAMP FF FF FF FF Static OFF
TRIAMP FF FF FF FF Static OFF
12-bit DAC Static FF FF Static Static Static
USB-FS/LS Static Static Static Static Static OFF
USB DCD Static FF FF Static Static OFF
USB DCD Static FF FF Static Static OFF
USB Regulator |Optional Optional Optional Optional Optional Optional
Ethernet Wakeup Static Static Static Static OFF
RTC-Ext OSC2 |FF FF FF FF FF FF
CMP HS or LS FF FF HS or LS LS LS
6-bit DAC Static FF FF Static Static Static
VREF FF FF FF FF Static OFF

5.5 Mode transition requirements
Table 5-2. Mode transition requirements

Trans# From To Trigger Conditions

1 RUN WAIT Execute WAIT(); - This means
that sleep-now or sleep-on-
exit modes entered with
SLEEPDEERP clear

WAIT RUN Interrupt or Reset

Table continues on the next page...

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

62 Freescale Semiconductor, Inc.

4
Chapter 5 Power Management Controller (PMC/MODECTL)

Table 5-2. Mode transition requirements (continued)

Trans# From To Trigger Conditions

2 RUN STOP Execute STOP(); This means
that sleep-now or sleep-on-
exit modes entered with
SLEEPDEEP set

STOP RUN Interrupt or Reset — Interrupt
goes to ISR (no LLWU)

3 RUN VLPR* Reduce system bus and
core frequency to 2 MHz
or less

Flash access frequency
limited to 1 MHz,

AVLP =1

Set RUNM =10

Note: Poll VLPRS bit
before executing VLPR
specific code

(You also could wait ~ 5
ps instead of waiting for

VLPRS)

VLPR* RUN Set RUNM = 00 or
Interrupt with LPWUI = 1
or Reset

Note: Poll REGONS bit
before increasing

frequency.
4 VLPR* VLPW Execute WAIT();
VLPW VLPR* Interrupt with LPWUI = 0
5 VLPW RUN Interrupt with LPWUI = 1 or
Reset
6 VLPR* VLPS LPLLSM = 000 or 010,
execute STOP();

VLPS VLPR* Interrupt with LPWUI = 0

7 RUN VLPS AVLP=1, LPLLSM =010,
execute STOP();

VLPS RUN Interrupt with LPWUI= 1 or
Reset

8 RUN LLS Set ALLS in PMPROT,
LPLLSM = 011, Execute
STOP();

LLS RUN Wakeup from enabled LLWU
pin or module source or Reset
pin

9 VLPR LLS Set ALLS in PMPROT,
LPLLSM = 011, Execute
STOP();

10 RUN VLLS (3,2,1) Set AVLLSx in PMPROT,

LPLLSM =101 for VLLSS,
110 for VLLS2, 111 for
VLLS1, Execute STOP();

Table continues on the next page...

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 63

Source of wakeup, pins and modules

Table 5-2. Mode transition requirements (continued)

Trans# From To Trigger Conditions

VLLS (3,2,1) RUN Wakeup from enabled LLWU
input source or Reset. All
wakeup goes through Reset
sequence. Check SRS for
source of wakeup. Check
LPLLSM for mode

11 VLPR VLLS (3,2,1) Set AVLLSx in PMPROT,
LPLLSM = 101 for VLLSS3,
110 for VLLS2, 111 for
VLLS1, Execute STOP();

5.6 Source of wakeup, pins and modules
Table 5-3. Source of wakeup, pins and modules

LLWU Pin function
LLWU_PO LLWU_MOIF
LLWU_P1 PTE2/DSPI1_SCK/SDHCO0_DCLK
LLWU_P2 PTE4/DSPI1_PCS0/SDHCO0_D3
LLWU_P3 PTA4/FTMO_CH1/NMI
LLWU_P4 PTA13/CANO_RX/FTM1_CH1 /FTM1_QD_PHB
LLWU_P5 PTBO0/12C0_SCL/FTM1_CHO /FTM1_QD_PHA
LLWU_P6 PTC1/SCH_RTS/FTM0_CHO
LLWU_P7 PTC3/SCI_RX/FTM0_CH2
LLWU_P8 PTC4/DSPI0O_PCS0/FTMO_CH3
LLWU_P9 PTC5/DSPIO_SCK
LLWU_P10 PTC6/PDBO_EXTRG
LLWU_P11 PTC11/SSI0_RXD
LLWU_P12 PTDO/DSPIO_PCS0/SCI2_RTS
LLWU_P13 PTD2/SCI2_RX
LLWU_P14 PTD4/SCI0_RTS/FTMO_CH4/EWM_IN
LLWU_P15 PTD6/SCI0_RX/FTMO_CH6/FTMO_FLTO
LLWU_MOIF LPT1
LLWU_M1IF CMPO
LLWU_M2IF CMP1
LLWU_MBIF CMP2
LLWU_M4IF TSI
LLWU_M5IF RTC
LLWU_M®6IF Reserved
LLWU_M7IF Error Detect - wake-up source unknown

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

64 Freescale Semiconductor, Inc.

Chapter 6
Memory Protection Unit (MPU)

6.1 Using the memory protection unit module

6.1.1 Overview

This chapter demonstrates how to use the MPU module, which concurrently monitors
system BUS activities and its access privileges on internal RAM. The following example
shows how to program the region descriptors that define internal RAM memory spaces
and their access rights.

6.1.2 Introduction

The MPU is a Freescale Kinetis module for memory protection. This module should not
be confused with ARM’s MPU. ARM’s MPU is not integrated in Kinetis MCUs.
However, both Freescale and ARM MPU shared the same purposes — regions protection,
access permissions, and overlapping regions protection. In addition, the Freescale MPU
provides access error detection and multiple bus masters monitor.

6.1.3 Features

A Memory Management Unit (MMU) is designed for complex memory management and
memory protection in microprocessors with Translation Look-aside Buffer (TLB),
paging, dynamic allocation, access protection, and virtual memory. This MMU
implementation will be costly for the overall system — it will have a large memory
footprint, higher power consumption, paging segmentation, and larger die size for Kinetis
MCUs.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 65

Configuration examples

The MPU module is designed for less complex memory management without TLB,
paging, dynamic allocation, and virtual memory. It provides lower power consumption
and no paging segmentation; therefore, an MPU is better suited for MCUs.

6.1.4 Configuration examples

6.1.4.1 Region descriptors setup

Example code:

#define TCML_BASE 0x20000000// Upper SRAM bitband region
#define TCML_SIZE 0x00010000

/* MPU Configuration */
MPU_RGDO_WORD2 = 0;// Disable RGDO

// Set RGD1

MPU_RGD1_WORDO = 0;// Start address

MPU RGD1 WORD1 = (TCML_ BASE + TCML_SIZE);// End Address
MPU _RGD1 WORD2 = 0x0061F7DF; (No magic #’'s)// Bus master 3: SM all access (List what the Bus
masters are in addition to #’s)

// Bus master 2: SM all access

// Bus master 2: UM all access

// Bus master 1: SM all access

// Bus master 1: UM all access

// Bus master 0: SM all access

// Bus master 0: UM all access

MPU _RGD1 WORD3 = 0x00000001;// region is valid

OO EFEFNDN

// Set RGD2

MPU_RGD2_ WORDO
MPU_RGD2_ WORD1
MPU_RGD2_WORD2
MPU_RGD2_ WORD3

(TCML_BASE + TCML_SIZE + 0x40) ;
0xXFFFFFFFF;// End Address
0x0061F7DF;

0x00000001;// region is valid

// Enable MPU function
MPU CESR = 0x00000001;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

66 Freescale Semiconductor, Inc.

Chapter 7
Enhanced Direct Memory Access (eDMA) Controller

7.1 eDMA

7.1.1 Overview

This chapter is a compilation of code examples and quick reference materials that have
been created to help you speed up the development of your applications with the eDMA
module of the Kinetis family. Consult the device-specific reference manual for specific
part information.

This chapter demonstrates how to configure and use the eDMA module to create data
movement between different memory and peripheral spaces without the CPU’s
intervention.

7.1.1.1 Introduction

The DMA controller provides the ability to move data from one memory mapped
location to another. After it is configured and initiated, the DMA controller operates in
parallel to the core, performing data transfers that would otherwise have been handled by
the CPU. This results in reduced CPU loading and a corresponding increase in system
performance. Figure 7-1 illustrates the functionality provided by a DMA controller.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 67

CxBBEBEBCCC

CxDDDDEEE

eDMA
Source o
il A

eahAN Transfar requeast

O 112222

(xA3904 444 A l O WA write

izacls SO [T —

Ox 55556866 data destinatio e 5P TR Registar

[orr7resss | | Oxcmmamann OITARAA

Figure 7-1. DMA operational overview

The Kinetis family features an enhanced Direct Memory Access (eDMA) controller for
data movement. The eDMA controller of the Kinetis family contains a 16-bit data buffer
as temporary storage, see Figure 7-1. Because Kinetis is a crossbar based architecture, the
CPU is the primary bus master hooked on the MO and M1 master port. The eDMA 1is
connected to the M2 master port of the crossbar switch. Therefore the CPU and eDMA
can access different slave ports simultaneously. With this multi-master architecture, the
system can make the maximum usage of the eDMA feature. Figure 7-2 shows the basic
architecture of the Kinetis family. A specialized device may have differences — refer to
the device-specific reference manual for details.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
68 Freescale Semiconductor, Inc.

4
Chapter 7 Enhanced Direct Memory Access (eDMA) Controller

Cina4,

ARM

ST

Cache MLIX

y v v vy ¥ v v 3

Mo M M2 M2 M4 M3 Ma M7

‘; Other Mastars

Crosshar switch

oo
ac]

— 2
PR
— 2
— 2
— @
— 2
pil— 7

MPL Other Slave
SRAM
Flash bac kcoor

Figure 7-2. Crossbar switch configuration

The crossbar switch forms the heart of this multi-master architecture. It links each master
to the required slave device. If both masters attempt joint access to the same slave, an
arbitration scheme commences eliminating the bus contention. Both fixed priority and
round robin arbitration schemes are available. If both masters attempt to access different
slaves, an arbitration scheme works for the judgement.

7.1.2 eDMA trigger

Each channel of the Kinetis eDMA module can be triggered to start DMA transfer of
multiple sources from peripherals or software. The eDMA module integrates the DMA
Mux to route a different trigger source to the 16 channels. With the DMA Mux, up to 63
events occurring within other peripheral modules can activate an eDMA transfer. In
many modules, event flags can be asserted as either eDMA or Interrupt requests. These
sources can be selected through DMAMUX_CHCFGn[SOURCE] registers. But different
devices may have different peripheral source configurations. Refer to the device-specific
reference manual for details.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 69

A
eDMA

7.1.2.1 DMA multiplexer

The DMA channel Mux helps to configure the eDMA source. 52 peripheral slots and 10
always-on slots can be routed to 16 channels. The first four channels additionally provide
periodic trigger functionality. And each channel router can be assigned to one of the 52
possible peripheral DMA slots or to one of the 10 always-on slots. The logic structure of
the DMA Mux is illustrated in Figure 7-3.

L T T Y
2l 2 & &
Source O Dizable
—_—
Source 1 B3V
—_— \
Source 2
. ¥ gDMA channel O -
L=< [:!:] DA channs! 1
L] @1 e0MA channel 2 -
Sourse 53 | bd -y, eDMA channel 3
=] -
always enabled 1 =OMA channsl 4.,
e eDMA channel &
-
always enabled 10 :
—_—T» DA channel ‘Ii

Figure 7-3. DMA Mux block diagram

7.1.2.2 Trigger mode
The DMA Mux supports three different options for triggering DMA transfer requests.

* Disabled Mode—No request signal is routed to the channel and the channel is
disabled. This is the reset state of a channel in DMA Mux. Disabled mode can also
be used to suspend an eDMA channel while it is reconfigured or not required.

* Normal Mode—A DMA request is routed directly to the specified eDMA channel.

* Periodic Trigger Mode—This mode is only available on eDMA channel 0~3. In this
mode, a PIT request is working as a strobe for the channel’s DMA request source,
which means the DMA source may only request a DMA transfer periodically. The
transfer may be started only when both the DMA request source and the period

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

70 Freescale Semiconductor, Inc.

Chapter 7 Enhanced Direct Memory Access (eDMA) Controller

trigger are active. This provides a means to gate or throttle transfer requests using the
PIT. This is normally used for periodically polling the peripheral source status to
control the transfer schedule or for periodical transferring.

Figure 7-4 shows the relationship between the PIT periodic trigger, peripheral transfer
source request, and the transfer activation.

e [T

Farpheial
Raquesi

e =

Channal
Aelred

Figure 7-4. PIT gated transfer activation

The hardware provides ten ““ always enabled request ” sources that can be used in
periodic trigger mode. These permit transfers to be initiated based only on the PIT. This
1s shown in Figure 7-5.

o] | || | | L

Parip herial Raquas]
[alvays amblked)

Chean nasl
A ke

=== ——=—
== ——tre=—
— === r=-
————— e

Figure 7-5. PIT-only transfer activation

7.1.2.3 Multiple transfer requests

Only one channel can actively perform a transfer. To manage multiple pending transfer
requests, the eDMA controller offers channel prioritization. Fixed priority or round robin
priority can be selected.

In the fixed priority scheme each channel is assigned a priority level. When multiple
requests are pending, the channel with the highest priority level performs its transfer first.
By default, fixed priority arbitration is implemented with each channel being assigned a
priority level equal to its channel number. Higher priority channels can preempt lower
priority channels. Preemption occurs when a channel is performing a transfer while a

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 71

A
eDMA

transfer request is asserted to a channel of a higher priority. The lower priority channel
halts its transfer on completion of the current read/write operation and allows the channel
of higher priority to work.

In round robin mode, the eDMA cycles through the channels from the highest to the
lowest, checking for a pending request. When a channel with a pending request is
reached, it is allowed to perform its transfer. After the transfer has been completed, the
eDMA continues to cycle through the channels looking for the next pending request.

7.1.3 Transfer process—major and minor transfer loop

Each channel requires a 32-byte transfer control descriptor (TCD) for defining the desired
data movement operation. The channel descriptors are stored in the eDMA local memory
in sequential order.

Each time a channel is activated and executes, n bytes are transferred from the source to
the destination. This is referred to as a minor transfer loop. A major transfer loop consists
of a number of minor transfer loops, and this number is specified within the TCD. As
iterations of the minor loop are completed, the current iteration (CITER) TCD field is
decremented. When the current iteration field has been exhausted, the channel has
completed a major transfer loop. Figure 7-6 shows the relationship between major and
minor loops. In this example a channel is configured so that a major loop consists of three
iterations of a minor loop. The minor loop is configured as a transfer of 4 bytes.

Source Data
Transferrad

DMA Request (PY1eS -1 =4 wriner L gop

{channel activated)
CITER
?
DMA Request [4 |
Time
1
CITER Major Loop
.
DMA Request [4 |
CITER
1
4

Figure 7-6. Major and minor transfer loops

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

72 Freescale Semiconductor, Inc.

4
Chapter 7 Enhanced Direct Memory Access (eDMA) Controller

7.1.4 Configuration steps
To configure the eDMA the following initialization steps must be followed:

1. Write the eDMA control register (only necessary if the configuration of another than
the default is required)

2. Configure channel priority registers in the DCHPRIn (if necessary)

3. Enable error interrupts using either the DMAEEI or DMASEEI register (if
necessary)

4. Write the transfer control descriptors for channels that will be used

5. Configure the appropriate peripheral module and configure the eDMA MUX to route
the activation signal to the appropriate channel

All transfer attributes for a channel are defined in the unique TCD for the channel. Each
32-bit TCD is stored in the eDMA controller module. Only the DONE, ACTIVE and
STATUS fields are initialized at reset. All other TCD fields are undefined at reset and
must be initialized by the software before the channel is activated. Failure to do this
results in unpredictable behavior. Refer to the device-specific reference manual for the
TCD detail description.

7.1.5 Example—PIT-gated DMA requests

In this example, the eDMA is used to supply the analog-to-digital converter with a
command word and move the result of AD to a location in the internal SRAM. The AD
command word stores all the information that the AD module requires for a conversion,
so by using the DMA to provide the command words, the module can be instructed to
perform conversions without any CPU intervention. After the result is transferred by the
eDMA to internal SRAM, the application can make further analysis on the data.

7.1.5.1 Requirements

The input to the ADCO must be sampled every 1 ms. To achieve this, a 32-bit AD
command word must be supplied to the ADCO_SC1A (0x4003B000) every 1 ms, when
the module is able to accept the command. The command word is located in the internal
SRAM. This example only requires a single command word to be provided to the AD. It
1s stored in a variable labeled "command." After the AD has completed the conversion,
the result is moved from the AD result register ADCO_RA, located at 0x4003B010, to
address 0x1FFF9000 in internal SRAM. Figure 7-7 illustrates the functionality of this
example.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 73

eDMA

ADC
FGmd Reqg Fesult Reg
F 3
AD command,
DMA request DM AD result
gated with 1ms =™ A = DMA request
FIT pulse
¥
Command Result
Internal HAM

Figure 7-7. Example 2 overview

7.1.5.2 Module configuration

To implement this example two eDMA channels are required: one to transfer the
command word and the other to transfer the result. The command transfer request
requires a 1 ms PIT trigger, and an always-on trigger. The DMA MUX must be
configured for PIT gated channel activation. Channel 1 is configured to perform this
transfer.

Channel 0 is used to transfer the AD result to RAM. This transfer is activated when the
AD result ready flag is asserted. The default channel arbitration gives channel 1 priority
over channel 0. This configuration ensures that the AD receives a command word every 1
ms. It could however cause results to be overwritten in the result register before they have
been moved by the eDMA, as the channel reading the results does not have priority. The
setup can be changed to ensure every result is captured to give the channel reading the
results higher priority. The DMA MUX configuration for channels 0 and 1 is:

/* Configure DMAMux for Channel 0 */

DMAMUX_CHCONFIGO = (0

| DMAMUX ENABLE /* Enable routing of DMA request */

| DMAMUX SOURCE(40)); /* Channel Activation Source: AD A Result */

/* Configure DMAMux for Channel 1 */

DMAMUX CHCONFIG1l = (O

| DMAMUX ENABLE /* Enable routing of DMA request */

| DMAMUX TRIG /* Trigger Mode: Periodic */

| DMAMUX SOURCE(54)); /* Channel Activation Source: AD A Command */

Channel 1 is configured to use a periodic trigger — PIT1. The PIT1 module must be
enabled and configured for the desired time interval.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

74 Freescale Semiconductor, Inc.

4
Chapter 7 Enhanced Direct Memory Access (eDMA) Controller

The command data of the AD module must be prepared according to the definition of the
AD command register before starting the DMA transfer (enable PIT1). Each channel in
this example transfers data to or from the static-address, 32-bit wide command or result
register, respectively. Therefore, it is necessary to restore the address pointers in the TCD
when the major or minor transfer loop is complete. This example has no table of data to
transfer, making only a single minor loop necessary to complete a major loop. The source
and destination addresses are therefore restored on completion of the major loop. The
TCD configuration for channels 0 and 1 is:

/* Configure DMA Channel 0 TCD */

EDMAC_TCDO_WO = EDMAC_SADDR(0x4003B010) ;/* Source Address = AD Result Register
EDMAC_TCDO W1 = (0

| EDMAC SMOD (0x0) /* Source Modulo, feature disabled */

| EDMAC SSIZE(0x2) /* Source Size = 0x2 -> 32-bit transfers */

| EDMAC DMOD (0x0) /* Destination Modulo, feature disabled */

| EDMAC DSIZE(0x2) /* Destination Size = 0x2 -> 32-bit transfers */

| EDMAC SOFF (0x0)); /* Source addr offset = 0x0, do not increment */

EDMAC_TCDO_W2 EDMAC_NBYTES (0x4); /* Transfer 4 bytes per channel activation */
EDMAC TCDO_W3 EDMAC_SLAST (0x0); /* Do not adjust SADDR upon channel completion */
EDMAC_TCDO_W4 EDMAC_DADDR (0x1FFF9000); /* Destination Address = 0x500, Ext RAM */
EDMAC_TCDO W5 = (0

/*| EDMAC_CITER _E LINK /* Do not set ELINK bit, no channel linking */

| EDMAC CITER(0x1) /* Current Iter Count -> 1 "NBYTES" transfer */

| EDMAC DOFF (0x0)); /* Destination addr offset = 0x0, no increment */

EDMAC_TCDO_ W6 = EDMAC DLAST (0x0); /* Do not adjust DADDR upon channel completion */
EDMAC_TCDO W7 = (0

| EDMAC BITER(0x1l) /* Beginning Iteration Count = 1 = CITER */

| EDMAC BWC(0x0) /* Bandwidth control = 0 -> No eDMA stalls */

| EDMAC MAJOR LINKCH (0x0)); /* Ignored, no channel linking */

/* Configure DMA Channel 1 TCD */

EDMAC_TCD1 WO = EDMAC SADDR((uint32) &command) ;/* Source Addr = address of command var */
EDMAC_TCD1 W1 = (0

| EDMAC SMOD (0x0) /* Source Modulo, feature disabled */

| EDMAC SSIZE(0x2) /* Source Size = 0x2 -> 32-bit transfers */

| EDMAC DMOD (0x0) /* Destination Modulo, feature disabled */

| EDMAC DSIZE(0x2) /* Destination Size = 0x2 -> 32-bit transfers */

| EDMAC SOFF (0x0)); /* Source addr offset = 0x0, do not increment */

EDMAC_TCD1 W2 EDMAC_NBYTES (0x4); /* Transfer 4 bytes per channel activation */
EDMAC_TCD1_W3 EDMAC_SLAST(0x0); /* Do not adjust SADDR upon channel completion */
EDMAC TCD1 W4 EDMAC_DADDR (0x4003B000) ; /* Dest Addr = ATD Command Word Register */
EDMAC_TCD1 W5 = (0

/*| EDMAC_CITER _E LINK /* Do not set ELINK bit, no channel linking */

EDMAC CITER(0x1) /* Current Iter Count -> 1 "NBYTES" transfer */
EDMAC DOFF (0x0)); /* Destination addr offset = 0x0, no increment */

EDMAC_TCD1 W6 = EDMAC DLAST(0x0); /* Do not adjust DADDR upon channel completion */
EDMAC_TCD1 W7 = (0

/*| EDMAC BITER E LINK /* Do not set ELINK bit, no channel linking */
EDMAC_BITER(0x1) /* Beginning Iteration Count = 1 = CITER */

EDMAC_BWC (0x0) /* Bandwidth control = 0 -> No eDMA stalls */
EDMAC_MAJOR_LINKCH(0x0)); /* Ignored, no channel linking */

Using these configurations produces the required eDMA functionality for this example.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 75

eDMA

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

76 Freescale Semiconductor, Inc.

Chapter 8
Using the Flash Standard Software Drivers

8.1 Overview
This chapter provides an introduction to the standard software drivers (SSDs) for 90 nm
thin film storage flash (FTFx) derivatives, which include the Kinetis family. These
software drivers are a set of application programming interfaces (APIs) intended to
provide program and erase capability, security-related commands, and interrupt
configurations in a set of functions for use by embedded system developers and third-
party flash programming tool developers. The FTFx SSDs provide support for program-
flash (P-Flash) and for Kinetis variants that feature FlexMemory, the FTFx SSDs provide
support for:

* FlexXNVM which may be partitioned as data flash (D-Flash) and/or

» E-Flash (for EEPROM backup) and FlexRAM, which may be used as traditional

RAM or, as high-endurance enhanced EEPROM (EEE) storage.

The following examples will reference the FTFL Flash found on some Kinetis variants,
but can be equally applied to the other derivatives with minor differences. Please refer to
the specific SSDs for your FTFx derivative for more details.

8.2 Downloading flash software drivers

The FTFL standard software drivers can be downloaded from http://www.freescale.com,
using the following steps:

1. Visit http://www.freescale.com/webapp/sps/site/homepage.jsp?code=KINETIS.
2. Select a Kinetis microcontroller family.

3. Navigate the Software and Tools tab.

4. Select Device Drivers.

5. Select the file C90TFS_FLASH_DRIVER.

Alternatively, the C90TFS flash software drivers can be located by typing
CI90TFS_FLASH_DRIVER in the keyword search field of http://www.freescale.com.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
Freescale Semiconductor, Inc. 77

http://www.freescale.com
http://www.freescale.com/webapp/sps/site/homepage.jsp?code=KINETIS
http://www.freescale.com

Features

8.3 Features
The FTFL SSDs allow the user to perform the following tasks on the flash:
* Flash initialization
* Erase flash (single block, all blocks, sector)
» Read 1s (single block, all blocks, section)
* Program (longword, section)
* Program check
* Calculate flash checksum
* Program information row
* Read information row (Program Flash, Data Flash)
» Set/Get interrupt enable
* Get security state
» Security bypass via backdoor key
* Suspend/Resume erase flash sector operation
» Set/Get program flash protection

For devices that feature FlexMemory, the FTFL SSDs allow the user to perform the
following additional tasks:

e Partition FlexNVM

» Set/Get data flash protection

» Set/Get EERAM protection

* Set EEE enable

e Write EEPROM

The function that performs the flash initialization,riash1nit (), must be invoked first to
provide the software driver with:

e Information about the flash

 Data flash and EEPROM size for devices that feature FlexMemory

8.4 Configuration parameters

8.4.1 SSD configuration structure

The FTFL software drivers use a structure (rrass_ssp_conric) that includes chip-specific
static parameters for the FTFL. The type definition of this structure is shown below and
can be found in SSD_FTFL.h:

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

78 Freescale Semiconductor, Inc.

4
Chapter 8 Using the Flash Standard Software Drivers

[Hmmmm e Flash SSD Configuration Structure ------------------- */
typedef struct _ssd config

UINT32 ftflRegBase; /* FTFL control register base */

UINT32 PFlashBlockBase; /* base address of PFlash block */

UINT32 PFlashBlockSize; /* size of PFlash block */

UINT32 DFlashBlockBase; /* base address of DFlash block */

UINT32 DFlashBlockSize; /* size of DFlash block */

UINT32 EERAMBlockBase; /* base address of EERAM block */

UINT32 EERAMBlockSize; /* size of EERAM block */

UINT32 EEEBlockSize; /* size of EEE block */

BOOL DebugEnable; /* debug mode enable bit */

PCALLBACK CallBack; /* pointer to callback function */

} FLASH SSD CONFIG, *PFLASH SSD_CONFIG;

The values of these structure members are defined when the user selects a value for the
define rrasu_perivarive in SSD_FTFL.h. For devices that feature FlexMemory, parameters
DFlashBlockSize, aNd EFlashBlocksize are initialized in the riasninit () function based on the
values in the D-Flash information row (IFR).

caliBack 1S a function pointer that allows the user to specify a function that is called to
service a time-critical event. An example of such an event is a watchdog service routine,
but another type of function can be called if the duration of a flash command operation
exceeds a certain timeout period.

8.4.2 SSD derivative

The value of the define rrasu perrvarive iIn SSD_FTFL.h selects additional defines that
assigns corresponding values to the program flash block size, program flash block base,
data flash block size, data flash block base, and the FTFL register base.
* On the TWR-K60N512 Tower Module, which has 512 KB of program flash, the
appropriate value for FLASH_DERIVATIVE 18 FTFL_KX_ 512K OK_OK.
* On the TWR-K40X256 Tower Module, which has 256 KB of program flash, 256 KB
of FlexNVM and 4 KB of FlexRAM, the appropriate value for rLasu_per1vaTIvE 1S

FTFL KX 256K 256K 4K.

8.5 Demo code

CAUTION
A flash memory location must be in the erased state before
being programmed. Cumulative programming of bits, or back-
to-back program operations without an intervening erase within
a flash memory location, is not allowed. Reprogramming of
existing Os to 0 is not allowed as this overstresses the device.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 79

Demo code

The FTFL SSD download includes example projects that execute from SRAM to
illustrate program and erase capability, security-related commands and interrupt
configurations on the flash using the TWR-K60N512 Tower Module, featuring 512 KB
of program flash, and the TWR-K40X256 Tower Module, featuring FlexMemory and
256 KB of program flash.

These projects can be opened and compiled using the IAR Embedded Workbench IDE.

The structure pointer fiashsspconfig Of type rrasu_ssp_conric is created using defines whose
values are dependent on the define FLASH DERIVATIVE.

The following code is excerpted from NormalDemo.c, which is included in the FTFL
SSD download.

FLASH SSD CONFIG flashSSDConfig =

FTFx_REG_BASE, /* FTFx control register base */
PFLASH BLOCK BASE, /* base address of PFlash block */
PBLOCK_SIZE, /* size of PFlash block */

DEFLASH BLOCK BASE, /* base address of DFlash block */

0, /* size of DFlash block */

EERAM BLOCK BASE, /* base address of EERAM block */
EERAM BLOCK SIZE, /* size of EERAM block */

0, /* size of EEE block */

DEBUGENABLE, /* background debug mode enable bit */
NULL_CALLBACK /* pointer to callback function */

Once defined, the structure pointer f1ashsspcontig 1s passed to the SSD functions for use
during flash operations. The size of D-Flash block and the EEE block are initialized to O,
but will be updated during the riasninit () function, which determines the D-Flash and
EEE block sizes by reading the D-Flash IFR.

A return code is passed back to the calling function to indicate the success or failure of
the API execution. Upon successful completion, the passing value, FTFL_OK assigned to
value 0x0, is returned.

/**
* FlashInit () *

***/

returnCode = pFlashInit (&flashSSDConfig) ;
if (FTFL OK != returnCode)

ErrorTrap (returnCode) ;

}

Erasing a sector

The following example illustrates how to erase a sector in program flash:

/***

* FlashEraseSector () *

***/

/* Erase the last sector of PFLASH */

size = FTFL_SECTOR_SIZE;

destination = PFLASH BLOCK BASE + PBLOCK SIZE - size;

returnCode = pFlashEraseSector (&flashSSDConfig, destination, size, \
pFlashCommandSequence) ;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
80 Freescale Semiconductor, Inc.

4
Chapter 8 Using the Flash Standard Software Drivers

if (FTFL_OK != returnCode)

{
}

On Kinetis, a sector is defined as 2 KB (0x800).

* On the TWR-K60N512 Tower Module, which has 512 KB of program flash with
address 0x0000_0000-0x0007_FFFF, the above example will erase the flash sector
in the address range 0x0007_F800-0x0007_FFFF.

* On the TWR-K40X256 Tower Module, which has 256 KB of program flash with
address 0x0000_0000—0x0003_FFFF, the above example will erase the flash sector
in address range 0x0003_F800—0x0003_FFFF.

ErrorTrap (returnCode) ;

Performing a program operation

The following example illustrates how to perform a program operation using the Program
Section command. It assumes that an erase operation has already been performed on the
area to be programmed.

/**

* FlashProgramSection() *
***/

/* Write some values to EERAM */
for (i=0;1<0x10;1i+=4)

WRITE32 (flashSSDConfig.EERAMBlockBase + 1,0x11223344);

/* Program the values to PFLASH */

phraseNumber = 0x2;

destination = PFLASH BLOCK BASE + PBLOCK SIZE - phraseNumber*FTFL PHRASE SIZE;
returnCode = pFlashProgramSection (&flashSSDConfig, destination, \
phraseNumber, pFlashCommandSequence) ;

if (FTFL OK != returnCode)

{

?rrorTrap(returnCode);

The Program Section command programs the data stored in the section program buffer to
previously erased locations in the flash memory using an embedded algorithm. The
desired data to be programmed is preloaded into the section program buffer by writing to
the programming acceleration RAM (on devices with program flash only) or FlexRAM
(on devices with FlexMemory) when it is configured to function as traditional RAM.

The above-mentioned example:
1. Writes the 32-bit value 0x11223344 four times successively into addresses
0x1400_0000-0x1400_000F.
2. Issues the Program Section command, which loads the section program buffer with
values stored in 0x1400_0000-0x1400_000F and programs them into the last 16
bytes of program flash with address 0x0003_FFF0-0x0003_FFFF.

FlexXNVM partitioning for devices with FlexMemory

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 81

Additional resources

For devices with FlexMemory, the following example illustrates how to configure the
FlexRAM for 2048 bytes of EEPROM and partition the FlexXNVM for 128 KB of D-Flash
and 128 KB of E-Flash (EEPROM backup space):

/**

* DEFlashPartition () *
***/
EEEDataSizeCode = 0x03; // set EEPROM size for 2048 bytes
DEPartitionCode = 0x05; // set FlexNVM for 128 KB of D-Flash, 128 KB for EE backup
returnCode = pDEFlashPartition (&flashSSDConfig, \

EEEDataSizeCode, \

DEPartitionCode, \

pFlashCommandSequence) ;
if (FTFL _OK != returnCode)

ErrorTrap (returnCode) ;

}

/* Call FlashInit again to get the new Flash configuration */
returnCode = pFlashInit (&flashSSDConfig) ;
if (FTFL _OK != returnCode)

{
}

Additional examples can be found in Normal.c, and more detailed descriptions of each
SSD API can be found in the FTFL SSD User’s Manual.

ErrorTrap (returnCode) ;

8.6 Additional resources
In addition to the Flash Memory Module chapter of the Kinetis Reference Manual,
related information regarding the FTFL can be found in the following documents on
http://www .freescale.com :
e Standard Software Driver for FTFL User’s Manual (included in FTFL SSD
download)
* AN4282: Using the Kinetis Family Enhanced EEPROM Functionality.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

82 Freescale Semiconductor, Inc.

http://www.freescale.com

Chapter 9
Using the FlexMemory

9.1 Using the FlexNVM

9.1.1 Overview

This quick start guide demonstrates how to configure devices that offer the FlexMemory.

9.1.1.1 Introduction
The flash memory module (FTFL) includes several accessible memory regions depending
on the device configuration.
* Program flash—Non-volatile flash memory that can store program code and data
* FlexNVM—Non-volatile flash memory that can store program code, store data, and
backup EEPROM data
* FlexRAM—Byte-writeable RAM memory that can be used as traditional RAM or as
high-endurance EEPROM storage.

Program flash only devices have two blocks of flash with 2 KB sectors and offer swap
capability. FlexMemory enabled devices have one block of program flash with 2 KB
sectors, one block of FlexXNVM with 2 KB sectors, and one block of FlexRAM, but do
not offer swap capability.

9.1.1.2 Features

By default there is no need for the user to configure the FTFL. The configuration default
allows for the flash memory controller (FMC) to accelerate flash transfers. For
FlexMemory enabled devices, FlexNVM is configured as program/data flash and the

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 83

A ————
Using the FlexNVM

FlexRAM is configured as a general purpose RAM. Security is disabled, and because the
flash is in an erased state, the program flash, data flash, and EEPROM protections are
disabled so the regions can be programmed or erased.

9.1.2 Configuration examples

The user can configure FlexMemory enabled devices as either:
* FlexXNVM as data flash and FlexRAM as traditional RAM
* FlexXNVM as EEPROM flash records to support the built-in EEPROM feature and
FlexXRAM as EEPROM
* Or a combination of both

9.1.2.1 Basic data flash

In this particular configuration, the FlexNVM can be used as non-volatile flash memory
that can execute program code or store data. The FlexRAM can be used as traditional
RAM. This is the default configuration prior to execution of the “Program Partition
Command”.

9.1.2.1.1 Code example and explanation

This is the default configuration for devices with FlexMemory. There is no need for
partitioning the device in this implementation.

9.1.2.2 EEPROM flash records

In this particular configuration the FlexNVM is used exclusively for EEPROM backup
space. To configure the part the user must use the Flash Common Command Object
(FCCOB) registers to pass the “Program Partition Command” and associated parameters
to the memory controller in the FTFL module. The FCCOB requirements for execution of
this command are below:

Table 9-1. Program partition command FCCOB requirements

FCCOB Number FCCOB Contents [7:0]
0 0x80 (PGMART)
1 Not used
2 Not used
3 Not used

Table continues on the next page...

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

84 Freescale Semiconductor, Inc.

4
Chapter 9 Using the FlexMemory

Table 9-1. Program partition command FCCOB requirements (continued)

FCCOB Number FCCOB Contents [7:0]
EEPROM data size code
FlexNVM patrtition code

9.1.2.2.1 Code Example and Explanation
The following example uses a device with 256 KB of FlexXNVM and 4 KB of FlexRAM.

This example assumes the part is erased and that the flash memory clock gate control is
enabled in the system integration module (SIM). The default state in the SIM is flash
memory clock enabled.

For a complete list of EEPROM data size codes and FlexNVM Partition codes, please see
the device-specific reference manual.

In this example, the FlexNVM is configured to use all 256 KB of available memory as
EEPROM backup memory. The available 4 KB of FlexRAM are configured as
EEPROM. When configuring the FlexRAM for EEPROM 2 subsystems are created and
any FlexRAM not configured as EEPROM is unusable. The EEPROM data size code
being used is 0x32 which selects a size of subsystem A = subsystem B =2 KB. The
FlexNVM partition code used is 0x08, representing the size of our data partition as 0 KB
and the size of the EEPROM backup memory as 256 KB. This creates 2 EEPROM
subsystems 2 KB in size with each subsystem being backed up by 128 KB of EEPROM
backup memory.

Example Code:

/* Write the FCCOB registers */

FTFL_FCCOBO = FTFL_FCCOBO_CCOBn (0x80) ; // Selects the PGMPART command
FTFL _FCCOBl1l = 0x00;
FTFL_FCCOB2 = 0x00;
FTFL_FCCOB3 = 0x00;
FTFL_FCCOB4 = 0x32; // Subsystem A and B are both 2 KB
FTFL_FCCOB5 = 0x08; // Data flash size = 0 KB

// EEPROM backup size = 256 KB
FTFL_FSTAT = FTFL_FSTAT CCIF_MASK; // Launch command sequence

while (! (FTFL_FSTAT & FTFL_FSTAT CCIF MASK)) // Wait for command completion

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 85

A
Using the FlexNVM

9.1.2.3 Combination

In this configuration the FlexNVM is partitioned to use part of the available memory as
data flash and part as EEPROM backup space. The FlexRAM partitioned for EEPROM
can range from a minimum of 32 bytes to the maximum size of FlexRAM, 0 bytes selects
a configuration with no EEPROM. The size of the EEPROM backup space must be at
least 16 KB in size.

9.1.2.3.1 Code example and explanation
The following example uses a device with 256 KB of FlexXNVM and 4 KB of FlexRAM.

This example assumes the part is erased and that the flash memory clock gate control is
enabled in the system integration module (SIM). The default state in the SIM is flash
memory clock enabled.

In this example, the EEPROM data size code being used is 0x32 which selects a size of
subsystem A = subsystem B = 2 KB. The FlexNVM partition code use is 0x05,
representing the size of our data partition as 128 KB and the size of the EEPROM backup
memory as 128 KB. The system created has 128 KB of program/data flash and two 2 KB
EEPROM subsystems each backed up by 64 KB of EEPROM backup memory.

Example Code:

/* Write the FCCOB registers */

FTFL_FCCOB0 = FTFL FCCOBO_ CCOBn (0x80) ; // Selects the PGMPART command
FTFL_FCCOB1
FTFL_FCCOB2
FTFL_FCCOB3

0x00;
0x00;
0x00;

FTFL_FCCOB4 0x32; // Subsystem A and B are both 2 KB
FTFL_FCCOB5 0x05; // Data flash size = 128 KB

// EEPROM backup size = 128 KB

FTFL_FSTAT = FTFL_FSTAT CCIF_MASK; // Launch command sequence

while (! (FTFL_FSTAT & FTFL FSTAT CCIF MASK)) // Wait for command completion

9.1.3 Endurance

While different partitions of the FlexXNVM are available, the intention is that a single
choice for the FlexXNVM Partition Code and EEPROM Data Set Size will be used
throughout the entire lifetime of a given application. The FlexXNVM partition choices
affect the endurance and data retention characteristics of the device.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

86 Freescale Semiconductor, Inc.

4
Chapter 9 Using the FlexMemory

The bytes not assigned to data flash via the FlexXNVM Partition Code are used by the
FTFL to obtain an effective endurance increase for the EEPROM data. The built-in
EEPROM record management system raises the number of program/erase cycles that can
be attained prior to device wear-out by cycling the EEPROM data through a larger
EEPROM NVM storage space.

The endurance factor of a subsystem can be calculated for a partitioned device using the
formula:
Endurance_Subsystem = ((E-Flash-2*EEESPLIT*EEESIZE)/
(EEESPLIT*EEESIZE)) *Record_Efficiency*Endurance_Factor

Where:

Endurance_Subsystem = Maximum writes to EERAM for a given subsystem
E-Flash = allocated EEPROM backup for each subsystem (min 16 KB, max 128 KB)
EEESPLIT = Split factor for subsystem (A/B=0.5/0.5 or 0.25/0.75 or 0.125/0.875)
EEESIZE = allocated RAM for EEE (min 32 bytes, max 4 KB)

Record_Efficiency = 0.5 for 16-bit and 32-bit writes, 0.25 for 8-bit writes
Endurance_Factor = 10000 native cycles

Example 1:

A Kinetis device configured as in example 2 with 2 subsystems of 2 KB of EERAM
backed up by 128 KB of E-Flash, provides 310,000 cycles with 16-bit or 32-bit writes for
each subsystem.

Endurance_subsystem = ((E-Flash-2*EEESPLIT*EEESIZE)/(EEESPLIT*EEESIZE)) *
Record_Efficiency*Endurance_Factor

Endurance_subsystem = ((128 KB-2(.5)(4 KB))/(.5(4 KB))*.5*%10,000
Endurance_subsystem = ((124 KB)/2 KB)*5000
Endurance_subsystem = (62*5000)

Endurance_subsystem = 310,000

Example 2:

A Kinetis device configured as in example 3 with a subsystem of 2 KB of EE backed up
by 64 KB of E-Flash, provides 150,000 cycles with 16-bit or 32-bit writes.

Endurance_subsystem = ((E-Flash-2*EEESPLIT*EEESIZE)/(EEESPLIT*EEESIZE)) *
Record_Efficiency*Endurance_Factor

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 87

Using the FlexNVM
Endurance_subsystem = ((64 KB-2(.5)(4 KB))/(.5(4 KB))*.5*10,000

Endurance_subsystem = ((60 KB)/2 KB)*5000
Endurance_subsystem = (30*5000)
Endurance_subsystem = 150000

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
88 Freescale Semiconductor, Inc.

Chapter 10
EzPort Module

10.1 Using the EzPort module

10.1.1 Overview

This section demonstrates how to use the Ezport module for in-system programming
(ISP) of Kinetis on-chip flash memory.

10.1.1.1 Introduction

The Ezport module provides a serial programming interface that allows reading, erasing,
and programming Kinetis on-chip flash memory in a compatible format with many stand-
alone flash memory chips. Kinetis has two functional modes — single-chip mode (default)
and Ezport mode (for ISP programming). The mode entered depends on both the EZPCS
state during reset and the Ezport disable bit in FOPT register as shown in Table 1.

Table 10-1. Mode selection during reset

External conditions during reset Mode entered
/EZPCS =1 Single-chip mode
/EZPCS = 0 && FOPT[EZPORT_DIS] = 0 Single-chip mode
/EZPCS = 0 && FOPT[EZPORT_DIS] =1 Ezport mode

10.1.1.2 Features

The Ezport module has these features:
* Implements a subset of SPI format, supporting either of the following two modes:
CPOL=0, CPHA=0 or CPOL=1, CPHA=1

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
Freescale Semiconductor, Inc. 89

Using the EzPort module

» Able to read, erase, and program on-chip flash memory

» Able to reset Kinetis, allowing it to boot from flash memory after firmware updated

10.1.1.3 Command description

When in Ezport mode, Kinetis operates as a SPI slave and receives commands from an
external SPI master and translates those commands to flash memory accesses. Table 10-2
is a complete list of commands supported by the Ezport module.

Table 10-2. Ezport commands

Command Description Code Address Dummy Data bytes
bytes byte
WREN Write enable 0x06 0 0
WRDI Write disable 0x04 0 0
RDSR Read status register 0x05 0 0 1
READ Flash read data 0x03 3 0 1+
FAST_READ Flash read data at high speed 0x0b 3 1 1+
SP Flash sector program 0x02 3 0 8—section
SE Flash sector erase 0xd8 3 0 0
BE Flash bulk erase 0xc7 0 0 0
RESET Reset chip 0xb9 0 0 0
WRFCCOB Write FCCOB registers Oxba 0 0 12
FAST_RDFCCOB Read FCCOB registers at high Oxbb 0 1 1-12
speed
WRFLEXRAM Write FlexRAM Oxbc 3 4
RDFLEXRAM Read FlexRAM Oxbd 3 1+
FAST_RDFLEXRAM Read FlexRAM at high speed Oxbe 1 1+

NOTE

The ‘1+’ in the data bytes column means the SPI master could
read data continuously from the Ezport module. Starting from
one byte, the reading address will increment automatically
while reading. In this way, the whole flash memory could be
read with one single command.

10.1.1.3.1

Command format

As shown in Table 10-2, each command the Ezport module recognizes should start with a
command byte that is mandatory and be followed by an optional address byte, dummy
byte, or data byte. This is shown below. The bracketed items are optional.

Command [address] [dummy byte] [read or write data byte]

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

90

Freescale Semiconductor, Inc.

4

Chapter 10 EzPort Module
For example, some commands like WREN and WRDI need to send only the command
byte, while the other commands may have optional items. The dummy byte is used to
differentiate normal speed and fast speed read operations. For fast speed operations, the
external master should shift in one dummy byte before valid data is shifted out.
FAST_READ and FAST_RDFCCOB commands are examples that need to send the
dummy byte.

10.1.1.3.2 Command timing

Figure 10-1 and Figure 10-2 are the command timing for the READ and FAST READ
commands. Here it assumes CPOL=1 and CPHA=1.

EEFRCE
s T s
» rla — >]
' command ! 24bit address | :
EZPD —\ == e 00 i
1 1
E7PO High-Z i Data 1 1 Data 2

I'.-'31 III'.-'

Figure 10-1. READ command timing

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 91

Using the EzPort module

EZ PC’S_\

EPDH_HMMM@MMM,

g
! command ! 24bit address !
1
EZPD @R
EZPQ High-Z '
i
EZFCY
e JUUUUUDUPUNUIUOUOUUOUNUD
E‘ Cummy PE
EZPD
EZFC Dlata 1 Data 2

THE N O A I Y 0T WE Y 543NN 1 0)

- -
- by -

Figure 10-2. FAST READ command timing

10.1.1.4 Status register

The Ezport module provides a status register to reflect some reset out flash status and
also write progress flags. The FS, FLEXRAM, and BEDIS bits reflect flash security,
FlexRAM configurations, and whether bulk erase is supported under secure mode,
respectively. The status register can be read with the RDSR command to check reset out
status and whether a write command has completed.

Table 10-3. Ezport status register

7 6 5 4 3 2 1 0
FS WEF FLEXRAM BEDIS WEN WIP

10.1.2 Configuration examples

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

92 Freescale Semiconductor, Inc.

4
Chapter 10 EzPort Module

10.1.2.1 Hardware connections

Any SPI master could be used to connect to the Ezport module for flash programming.
Either QSPI or DSPI module on existing Coldfire devices could be used in this case.
Figure 10-3 shows the connection between the QSPI module on MCF5282 and Kinetis.
Here QSPI_CS1 and QSPI_CS2 are used as GPIO to control the timing between manual
reset of Kinetis and sampling of /EZPCS.

QSPI_CE0 HEEPCE
i
QsP1_DIM EZFQ
MCFs2s2 " Kinetis
QsPI_DouT EZFD
i
QSFI_CLK EZFCK
i
QsPI_Cs2 /RSTIM
-
QEPLCEA /RETOUT
iy

Figure 10-3. Connection between MCF5282 and Kinetis

Example code for set_to_ezp_mode:

// Configure as GPIO pins to monitor RSTOUT pins and assert RCON
MCF5282 GPIO_PQSPAR = 0x0; // GPIO function

MCF5282 GPIO_DDRQS = 0x08; // CS0 as output

MCF5282 GPIO_PORTQS = 0x08; // Drive CSO HIGH

/* set up wrap register for a single 8-bit transfer */
MCF5282 QSPI_QWR = MCF5282 QSPI QWR CSIV;

/* Enable QSPI Pins */

MCF5282 GPIO PQSPAR |= Ox7F;

// Configure as GPIO pins to monitor RSTOUT pins and assert RCON
MCF5282 GPIO_PQSPAR = 0x0; // GPIO function

MCF5282_ GPIO DDRQS = 0x28; // CS0 and CS2 as output
MCF5282 GPIO PORTQS = 0x28; // Drive RCON HIGH & RSTIN HIGH

MCF5282_ GPIO PORTQS = 0x08; // Drive RCON HIGH & RSTIN LOW
while ((data_in & 0x10))//wait till RSTOUT LOW

data_in = MCF5282 GPIO PORTQSP;

}

MCF5282 GPIO PORTQS = 0x20; // Drive RCON LOW & RSTIN HIGH

while (! (data_in & 0x10))//wait till RSTOUT HIGH

{

data in = MCF5282 GPIO_ PORTQSP;

}

//Exiting reset and entering EZPORT mode
MCF5282 GPIO_PORTQS = 0x28; // Drive RCON HIGH again

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 93

Using the EzPort module

10.1.2.2 Write enable and disable

Before issuing a write command (SP, SE, BE, WRFCCOB, or WRFLEXRAM) in the
Ezport module, first enable the WEN bit in the status register with the WREN command.
After those commands are completed, the WEN bit will automatically clear so next time
you issue another write command, the WREN command should be issued again.

Example code:

//ezp_wren cmd

ezp write byte (EZPORT WREN) ;

while (! (MCF5282 QSPI QIR & MCF5282 QSPI QIR SPIF));
//ezp_wrdi cmd

ezp write byte (EZPORT WRDI) ;

while (! (MCF5282 QSPI QIR & MCF5282 QSPI QIR SPIF));

NOTE
The code above assumes lower level byte sending with QSPI
has been implemented with ezp_write_byte. You could easily
implement this and port it to other SPI modules like DSPI.

10.1.2.3 Sector erase and program

The SP command programs up to one section of flash memory that has previously been
erased by an SE command. The starting address of both commands should be 64-bit
aligned (three LSBs being zero). The Ezport module buffer will receive program data in
FlexRAM/programming acceleration RAM before executing the SP command, so the
number of bytes to be programmed should be a multiple of eight and up to one section
size at a time.

Example code:

set _to ezp mode () ;
ezp spi init(0,6,0,0); /* max permitted clock speed for read */

// 1. Boot-up from reset with EZPORT enabled.
ezp wren cmd () ;

// 2. Verify WEN flag is set.
sr = ezp_rdsr_cmd() ;
if (sr != EP_SR WEN)

printf ("Failure in SR value: WEN not set\n");
error_count++;

}

//3. Sector erase
ezp_se cmd(sector addr) ;
//Loop till command has completed
sr = EP_SR_WIP;
// Poll SR until WIP goes low
while ((sr & EP_SR WIP) == EP SR WIP)

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

94 Freescale Semiconductor, Inc.

4
Chapter 10 EzPort Module

sr = ezp_rdsr_cmd() ;

ezp_wren _cmd() ;

//4. Sector program
ezp_pp_cmd(sector_addr, 64, pg_buffer);
//Loop till command has completed

sr = EP_SR _WIP;

// Poll SR wuntil WIP goes low
while ((sr & EP_SR _WIP) == EP_SR WIP)

sr = ezp_rdsr_cmd() ;

10.1.2.4 Write and read FCCOB registers

The flash command object registers consist of a group of 12 registers, each 1 byte wide.
These are used for sending command codes and data to the memory controller.

FCCOB number Command parameter contents
0 FCMD (code which defines the FTFL command)
1~3 Flash address [23:0]
4~B Data byte [0:7]

The WRFCCOB command allows you to write to the flash common command object
registers via the Ezport module and execute any command allowed by flash. After
receiving 12 bytes of data, Ezport writes the data to FCCOB registers and then
automatically launches the command within flash.

While the FAST_RDFCCOB command allows user to read the contents of flash common
command object registers.

NOTE
If more than or fewer than 12 bytes of data are received by the
WRFCCOB command, the result will be unexpected. Also
because in Ezport mode the flash is in an NVM special mode,
commands that can be executed under secure mode are
restricted.

Example code:

ezp wren cmd () ;

fccob[0] = 0x06;//program longword command
fccob[1l] = 0x00;//flash address is 0x00040c
fccob[2] = 0x04;
fccob[3] = 0x0c;
fccob[4] = Oxff;//program data is Oxfffffffe
fccob[5] = Oxff;
fccob[6] = Oxff;
fccob[7] = Oxfe;

ezp wrfccob cmd(fccob) ;
//Loop until command has completed
sr = EP_SR _WIP;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 95

Using the EzPort module

// Poll SR wuntil WIP goes low
while ((sr & EP_SR _WIP) == EP_SR WIP)
sr = ezp rdsr_cmd() ;

10.1.2.5 Write and read FlexRAM

The WRFLEXRAM command allows you to write four bytes of data to the FlexRAM. If
the FlexRAM is configured for EEPROM configuration, the WRFLEXRAM command
can effectively be used to create data records in EEPROM-flash memory. The address of
the FlexRAM location should be 32-bit aligned. If more than or fewer than four bytes of
data is received, this command has unexpected results.

RDFLEXRAM command returns data from FlexRAM. It also has a fast speed version

command FAST_RDFLEXRAM, which includes the dummy byte and runs at up to half
of internal system clock frequency.

Example code:

ezp_wren _cmd() ;
ezp wrflexram cmd(address, buffer);
//Loop till command has completed
sr = EP_SR _WIP;
// Poll SR wuntil WIP goes low
while ((sr & EP_SR WIP) == EP_SR WIP)
sr = ezp_ rdsr_cmd() ;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

96 Freescale Semiconductor, Inc.

Chapter 11
Flexbus Module

11.1 Using the Flexbus module

11.1.1 Overview

A multi-function external bus interface called the FlexBus interface controller is provided
with a basic functionality of interfacing to slave-only devices. It can be directly
connected to the following asynchronous or synchronous devices with little or no
additional circuitry, external ROMs, flash memories, programmable logic devices, or
other simple target (slave) devices.

11.1.1.1 Introduction

The FlexBus has up to six independent user-programmable chip-select signals
(FB_CS[5:0]) 8-bit, 16-bit, and 32-bit port sizes with configuration for multiplexed or
non-multiplexed address and data buses. Size configurable transfers (8-bit, 16-bit, 32-bit).

Programmable burst- and burst-inhibited, address-setup time with respect to the assertion
of chip select, address-hold time with respect to the negation of chip select and transfer
direction.

Extended address latch enables option help with glueless connections to synchronous and
asynchronous memory devices.

11.1.1.2 Features

11.1.1.2.1 Signal descriptions
FB_A[31:0] — In a non-multiplexed configuration, this is the address bus.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 97

A
Using the Flexbus module

FB_ADI[31:0] — In a non-multiplexed mode, this is the data bus. In a multiplexed mode,

the FB_AD[31:0] bus carries the address and the data. The number of byte lanes carrying

the data is determined by the port size.

FB_CS [5:0] — The chip-select signal indicates what device is selected. A particular
chip-select asserts when the transfer address is within the device’s address space. The
next two tables show how the number of chip selects available depend on the pin
configuration.

FB_BE/BWE[3:0] — When driven low, these outputs indicate the data latched or driven
onto a specific lane of the data bus.

FB_OE — The output enable signal is sent to the interfacing memory to enable a read
transfer. FB_OE is asserted only during a read access when a chip select matches the
current address decode.

FB_R/W — The processor drives this signal to indicate the current bus operation, 1
during read bus cycles and 0 during write bus cycles.

FB_ALE — The assertion of this signal indicates that the device has started a bus
transaction and the address and attributes are valid.

FB_TSIZ[1:0] — These signals along with FB_TBST indicate the data transfer size of
the current bus operation.

FB_TBST— Transfer burst indicates that a burst transfer is in progress and driven by the
device.

FB_TA — This input signal indicates that the external data transfer is complete. When
the processor recognizes FB_TA during a read cycle, it latches the data and then
terminates the bus cycle.

FB_CLK — FlexBus clock, the system provides a dedicated clock source to the FlexBus
module's external FB_CLK. Its clock frequency is derived from a divider
(SIM_CLKDIV1[OUTDIV3]) of the MCGOUTCLK.

11.1.1.2.2 Address and data bus multiplexing

Figure 11-1 shows the supported combinations of address and data bus widths. The bus
sends the address at the first stage (light blue), and the data at the second stage (green).

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

98 Freescale Semiconductor, Inc.

FB_AD
[31:24]

FB_AD
[23:16]

Address

FB_AD
[15:8]

[7:0]

Data Address
Address
Data Address

B Addross phase

Dalta phase

FB_AD

32-bit
part

16-bit
part

B-bit
part

N

Chapter 11 Flexbus Module

Figure 11-1. FlexBus multiplexed operating modes

11.1.1.2.3 Modes of Operation

Table 11-1 and Table 11-2 show the assignment of FlexBus signals available for the

Kinetis MCUs, depending on the package. Non-LCD devices are those without a segment

LCD peripheral.
Table 11-1. FlexBus signals on non-LCD devices
Packa | 144-pin 104-pin 100-pin 81-pin 60-pin 64-pin 48- | 32-
ge pin | pin
Signal |A[29:16] AD[31:0] AD[31:24, 5 CS |AD[19: 0] 4 CS |AD[19:0]2 CS |AD[17:012CS |[N/A [N/A
s AD[31:0] CS[5: |CS[5:0]
0]
Muxed |Up to 32 Up to 32 Up to 21 Up to 20 Up to 20 Upto 18 N/A [N/A
mode |address Upto |addressUpto |addressUpto |addressUpto |addressUpto [address Up to
32 data lines = |32 data lines = |16 data lines = |16 data lines = |16 data lines = |16 data lines =
AD[31:0] AD[31:0]] AD[15:0] AD[15:0] AD[15:0] AD[15:0]
Non- |Upto 30 Up to 24 Up to 21 N/A N/A N/A N/A |N/A
muxed |address = address = address =
mode |A[29:16] + AD[23:0] Up to |AD[20:0] Up to
AD[15:0] Up to |8 datalines= |8 data lines =
16 data lines = |AD[31:24] Up |AD[31:24]
AD[31:16] to 16 address =
AD[15:0] Up
to16 data lines
= AD[31:16]

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc.

99

Using the Flexbus module

Table 11-2. FlexBus signals on LCD devices

Package 144 pin 104 pin 100 pin 81 pin 60 pin 64 pin 48 pin 32 pin

Signals AD[31:0] N/A N/A N/A N/A N/A N/A N/A
CS[5:0]

Muxed Up to 32 N/A N/A N/A N/A N/A N/A N/A
mode address Up
to 32 data
lines =
AD[31:0]

Non-muxed | Up to 24 N/A N/A N/A N/A N/A N/A N/A
mode address =
AD[23:0] Up
to 8 data
lines =
AD[31:24]
Upto 16
address =
AD[15:0] Up
to16 data
lines =
AD[31:16]
LCD mode Upto 16 N/A N/A N/A N/A N/A N/A N/A
data lines =
AD[15:0] or
= AD[31:16]

11.1.1.2.4 Burst cycles

The device can be programmed to initiate burst cycles if its transfer size exceeds the port
size of the selected destination. The initiation of a burst cycle is encoded on the size pins.
For burst transfers to smaller port sizes, FB_TSIZ[1:0] indicates the size of the entire
transfer.

11.1.1.2.5 Data Byte Alignment and Physical Connections

The device aligns data transfers in FlexBus byte lanes with the number of lanes
depending on the data port width.

Figure 11-2 shows the byte lanes that external memory connects to, and the sequential
transfers of a 32-bit transfer for the supported port sizes when byte lane shift is disabled
or enabled.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

100 Freescale Semiconductor, Inc.

Chapter 11 Flexbus Module

Disalsle Enabla

TR P PO PO D3i:24) | FR_O[Z3:46) | FR_O[SE] | FR_D[T:E) Fa_D[A1-24 | FA_D{2a4&] | FA_D(IS:H | FE_piral LG

33-bi Pori Marsory A3-bi Paeri Narepry

b1 1
respornwmery [Driven wmiih Orivan with IR - - o oo
addrass valuas addrass salse m Byl 2

byl 2

sy
— _—
addraes valuae addirs vakoag m

Figure 11-2. Sequential 32-bit transfers, byte lane shift differences

B-5ik Pari Memaory

11.1.1.2.6 Memory map

Typical memory mapping as shown in Figure 11-3 0x6000_000 - 0xA000_0000 is the
FlexBus space used for execution, 0xA000_0000 - 0xE000_0000 can only be used for

data.

Figure 11-3. FlexBus memory range

11.1.1.2.7 Reference clock

Figure 11-4 shows a high-level diagram for the FlexBus reference clock. The maximum
FlexBus clock frequency in run mode is up to 50 MHz.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 101

Using the Flexbus module

B HIHAA

Figure 11-4. Clocking diagram

11.1.1.3 Configuration examples

In this example the FlexBus is connected to the MRAM memory of the TWR-MEM
board.

11.1.1.3.1 Code example and explanation

Figure 11-4 shows the FlexBus reference clock derived from the MCGOUTCLK. The
software needs to configure a stable clock. This example configures 96 MHz of core
frequency.

Example code:

/* Code Snippet */

int MRAM START ADDRESS = 0x60000000;
uint8 wdata8 = 0x00;
uint8 rdata8 = 0x00;

uintlé wdatalé = 0x00;
uintlé rdatalé = 0x00;
uint32 wdata32 = 0x00;
uint32 rdata32 = 0x00;

/* Set Base address */
FB_CSARO = MRAM START ADDRESS ;

/* Enable CS signal */
FB_CSMRO |= FB_CSMR_V_MASK;

FB_CSCRO |= FB_CSCR_BLS_ MASK // right justified mode

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

102 Freescale Semiconductor, Inc.

| FB_CSCR_PS(1)
| FB_CSCR_AA MASK
| FB_CSCR_ASET (0x1)

// 8-bit port

igs asserted
// | FB_CSCR_WS (0x1)
bus speed

’

Chapter 11 Flexbus Module

// auto-acknowledge
// assert chip select on second clock edge after address

// 1 wait state - may need a wait state depending on the

/* Set base address mask for 512 KB address space */

FB_CSMRO |= FB_CSMR_BAM(0x7) ;

/* Set BEO/1 to MRAM */
FB_CSPMCR |= 0x02200000;

/* Reference clock divided by 3 */
SIM CLKDIV1 &= ~SIM CLKDIV1 OUTDIV3 (OxF) ;
SIM CLKDIV1 |= SIM CLKDIV1 OUTDIV3 (0x3);

/* Configure the pins needed to FlexBus Function
/* this example uses low drive strength settings

//address/Data
PORTA PCR7=PORT PCR MUX(5) ; //fb_ad[18]
PORTA PCR8=PORT PCR MUX (5) ; //fb_ad[17]
PORTA_ PCR9=PORT PCR_MUX (5) ; //fb_ad[16]
PORTA_PCR10=PORT PCR_MUX (5) ; //fb_ad[15]
PORTA PCR24=PORT PCR_MUX (5) ; //fb_ad[14]
PORTA PCR25=PORT PCR _MUX(5) ; //fb_ad[13]
PORTA PCR26=PORT PCR MUX(5) ; //fb_ad[12]
PORTA_PCR27=PORT PCR_MUX (5) ; //fb_ad[11]
PORTA PCR28=PORT PCR_MUX (5) ; //fb_ad[10]
PORTD PCR10=PORT PCR MUX(5) ; //fb_ad[9]
PORTD PCR11=PORT PCR MUX (5) ; //fb_ad[8]
PORTD_PCR12=PORT PCR_MUX (5) ; //fb_ad[7]
PORTD PCR13=PORT PCR_MUX (5) ; //fb_adl[6]
PORTD PCR14=PORT PCR MUX(5) ; //fb_ad[5]
PORTE_PCR8=PORT PCR_MUX (5) ; //fb_ad[4]
PORTE_PCR9=PORT PCR_MUX (5) ; //fb_ad[3]
PORTE_PCR10=PORT PCR_MUX (5) ; //fb_ad[2]
PORTE PCR11=PORT PCR MUX(5) ; //fb_ad[1]
PORTE_PCR12=PORT PCR MUX (5) ; //fb_ad[0]
//control signals

PORTA PCR11=PORT PCR_MUX(5) ; //fb_oe b
PORTD PCR15=PORT PCR _MUX(5) ; //fb_rw_b
PORTE_PCR7=PORT PCR_MUX (5) ; //fb_cs0_b
PORTE_PCR6=PORT PCR_MUX (5) ; //fb_ale

/* 8 bit write */

* (vuint8*) (MRAM START ADDRESS + n) = O0xAC;

/* 8 bit read */

rdata8= (* (vuint8*) (&MRAM START ADDRESS + n));

/* 16 bit write */
(Vuint16)(MRAM_START_ADDRESS + n) = 0x1234;
/* 16 bit read */
rdatalG:(*(Vuintl6*)(&MRAM_START_ADDRESS + n));

/* 32 bit write */

* (vuint32*) (MRAM_ START ADDRESS + n) = 0x87654321;

/* 32 bit read */
rdata32=(*(vuint32*)(&MRAM_START_ADDRESS + n));

(alt 5) */
*/

// n=offset

// n = offset

// n=offset

// n offset

// n = offset

// n offset

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc.

103

PCB desigh recommendations

11.1.1.4 Hardware implementation
Eight data lines FB_D[7:0] and twenty four address lines FB_A[23:0] from the FlexBus

module are connected to the MRAM memory in an non-multiplexed mode.
B_AD[19:0] FB_AD[31:24]

FB CSO——
FB_ WE———p

FB OF———)
FB_ALE———Jp»

Figure 11-5. FlexBus device external connections

11.1.2 PCB design recommendations

11.1.2.1 Layout guidelines

Due to the critical timing required while driving external memories, there are a number of
considerations that must be taken into account during PCB layout.

» Each group of signals traces must have identical loading and similar routing, in order
to maintain timing and signal integrity

 Control and clock signals are routed point-to-point.

* Components could and should be placed as close as possible to the MCU.

* To avoid crosstalk, keep address and command signals separate (that is, a different
routing layer) from the data and data strobes.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
104 Freescale Semiconductor, Inc.

Chapter 12
Universal Asynchronous Receiver and Transmitter
(UART) Module

12.1 Overview

The UART module on the Kinetis family devices supports asynchronous, full-duplex
serial communications with peripheral devices or other CPUs. The UART module has
three main modes of operation -- UART, IrDA, and ISO-7816 mode.

The following sections will discuss the features and use of the UART in UART mode. In
particular the use of the UART as an RS-232 serial communication port will be
described. For full details on the UART module, including all of its features and modes
of operation, please refer to the device-specific reference manual.

12.2 Features

The feature set available on UARTS can vary from UART to UART. Basic UART
functionality is available on all UARTS, but the clock source for the module and the
transmit and receive FIFO sizes can vary. The table below lists the UART features that
vary based on UART module instantiation.

Table 12-1. UART instantiations on Kinetis

UART instance 1SO-7816 supported? FIFOs Module clock
UARTO Yes 8 entry TxFIFO, 8 entry Core Clock
RxFIFO
UART1 No 8 entry TxFIFO, 8 entry Core Clock
RxFIFO
UART2 - UARTnN No No FIFOs (double buffered Peripheral Clock
operation)

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 105

A
Configuration example
NOTE

The table above describes the UART instantiations on the

Kinetis family devices available as of the writing of this

document. As new Kinetis devices become available the UART

instantiations could change. Please refer to the "Chip

Configuration" chapter of the device-specific reference manual

to verify the UART instantiation information for your device.

12.3 Configuration example

The following sections give a software example for using a UART as an RS-232
communication port to an 8-N-1 PC terminal. The software is broken up into
initialization, transmit, and receive sections. The example uses the UART in a simple
polled configuration, but a description is provided to discuss how the UART could be
used in interrupt mode or in conjunction with the DMA to help decrease CPU loading.

12.3.1 UART initialization example

The initialization code below can be used to configure the UART for 8-N-1 operation
(eight data bits, no parity, and one stop bit) with interrupts and hardware flow-control
disabled. The parameters passed in to this function are the UART channel to initialize
(uartch), the module clock frequency for the UART in kHz (sysclk), and the desired baud
rate for communication (baud).

NOTE
The UART modules are pinned out in multiple locations, so the
initialization function below doesn't know which UART pins to
enable. The desired UART pins should be enabled before
calling this initialization function.

void uart_init (UART MemMapPtr uartch, int sysclk, int baud)
register uintlé ubd, brfa;
uint8 temp;

/* Enable the clock to the selected UART */
if (uartch == UARTO_BASE_PTR)
SIM SCGC4 |= SIM SCGC4 UARTO MASK;
else
if (uartch == UART1 BASE PTR)
SIM SCGC4 |= SIM SCGC4 UART1 MASK;
else
if (uartch == UART2 BASE PTR)
STIM_SCGC4 |= SIM_SCGC4 UART2 MASK;
else
if (uartch == UART3_BASE_PTR)
SIM SCGC4 |= SIM_SCGC4_UART3_MASK;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

106 Freescale Semiconductor, Inc.

}

Chapter 12 Universal Asynchronous Receiver and Transmitter (UART) Module

else
if (uartch == UART4_BASE_PTR)
SIM_SCGCl |= SIM_SCGCl_UART4_MASK;
else
SIM SCGCl |= SIM_SCGCl_UART5_MASK;

/* Make sure that the transmitter and receiver are disabled while we
* change settings.
*/

UART C2_ REG(uartch) &= ~(UART C2 TE MASK | UART C2 RE MASK);

/* Configure the UART for 8-bit mode, no parity */
/* We need all default settings, so entire register is cleared */
UART C1l REG (uartch) = 0;

/* Calculate baud settings */
ubd = (uintlé6) ((sysclk*1000)/ (baud * 16));

/* Save off the current value of the UARTx BDH except for the SBR */
temp = UART_BDH_REG (uartch) & ~(UART BDH_SBR (0x1F)) ;

UART_BDH_REG (uartch)
UART_BDL_REG (uartch)

temp | UART_BDH_SBR(((ubd & 0x1F00) >> 8));
(uints) (ubd & UART_ BDL_SBR_MASK) ;

/* Determine if a fractional divider is needed to get closer to the baud rate */
brfa = (((sysclk*32000)/(baud * 16)) - (ubd * 32));

/* Save off the current value of the UARTx C4 register except for the BRFA */
temp = UART C4_ REG (uartch) & ~(UART C4 BRFA(0x1F)) ;

UART C4 REG(uartch) = temp | UART C4 BRFA(brfa);

/* Enable receiver and transmitter */
UART C2 REG (uartch) |= (UART C2 TE MASK | UART C2 RE MASK);

The initialization above can be simplified to the following steps:

1.

2.

(O8]

Enable the UART pins by configuring the appropriate PORTx_PCRn registers (not
shown in the code example).

Enable the clock to the UART module.

Disable the transmitter and receiver. This step is included to make sure that the
UART is not active while it is being configured. This step is not needed if the
uart_init function is always called while the UART is already in a disabled state (the
UART is disabled after reset by default).

Configure the UART control registers for the desired format. For 8-N-1 operation no
UART registers actually need to be configured (the default register settings configure
the UART for 8-N-1 operation).

Calculate the baud rate dividers. This includes calculating the 13-bit whole number
baud rate divider, the SBR field stored in the UARTx_BDH and UARTx_BDL
registers, and the 5-bit fractional baud rate divider, the UARTx_C4[BRFA] field.
Enable the transmitter and receiver to start the UART.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 107

Configuration example

12.3.2 UART receive example

The function below shows an implementation for a simple polled UART receive
function. The parameter passed in to this function is the UART channel to receive a
character (uartch). The function returns the character that is received.

char uart _getchar (UART MemMapPtr channel)

/* Wait until character has been received */
while (! (UART S1 REG(channel) & UART S1 RDRF MASK)) ;

/* Return the 8-bit data from the receiver */
return UART D REG (channel) ;

}

Since this is a polled implementation, the function will wait until a character is received.
If no character is received, then the code will remain in the while loop indefinitely. In
order to avoid code getting "stuck" when no traffic is being received, it is a good idea to
include a function to test if a character is present or not. The uart_getchar_present
function can be called prior to calling the uart_getchar function in cases where UART
receive traffic is not guaranteed or required before moving on with program execution.

int uart_getchar present (UART MemMapPtr channel)

return (UART S1 REG(channel) & UART S1 RDRF MASK) ;

}

12.3.3 UART transmit example

The function below shows an implementation for a simple polled UART transmit
function. The parameters passed in to this function are the UART channel that will be
used to transmit (uartch) and the character to be sent (ch).

void uart putchar (UART MemMapPtr channel, char ch)

{

/* Wait until space is available in the FIFO */
while (! (UART S1 REG(channel) & UART S1_TDRE MASK)) ;

/* Send the character */
UART D REG (channel) = (uint8)ch;

12.3.4 UART configuration for interrupts or DMA requests

The examples included here poll UART status flags to determine when receive data is
available or when transmit data can be written into the FIFO. This approach is the most
CPU intensive, but it is often the most practical approach when handling small messages.
As message sizes increase it might be useful to use interrupts or the DMA to decrease the

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

108 Freescale Semiconductor, Inc.

L __4

Chapter 12 Universal Asynchronous Receiver and Transmitter (UART) Module
CPU loading. However, the overhead required to set up the interrupts or DMA should be
taken into account. If the additional overhead outweighs the reduction in CPU loading,
then polling is the best approach.

Using the UART interrupts to signal the CPU that data can be read from or written to the
UART will help to decrease the CPU loading. The UART has a number of status and
error interrupt flags that can be used, but for typical receive and transmit operations the
receive data register full flag (UARTx_S1[RDRF]) and transmit data register empty flag
(UARTx_S1[TDRE]) would be enabled using the UARTx_C2[TIE, RIE] bits. The names
of these flags are a bit misleading, since they don't always indicate a full or empty
condition. For UARTS that include a FIFO, the full or empty condition is determined
based on the amount of data in the FIFO compared to a programmable watermark. If both
the RDRF and TDRE interrupt requests are enabled, then the UART interrupt handler
would need to read the S1 register to determine which condition is true then read and/or
write to the UART data register (UARTx_D) to clear the flags. Since the CPU is still
responsible for moving data there is CPU loading associated with an interrupt-driven
software approach.

Using the DMA to move data can help to decrease the CPU loading even more than using
the UART interrupts. The UART's same RDRF and TDRE flags used for an interrupt-
driven software approach can be re-routed to the DMA controller instead. This is done by
setting the UARTx_CS5[TDMAS, RDMAS] bits. Each of these requests would be routed
to a different DMA channel (the specific DMA channels would be selected by
programming the DMA channel mux). One DMA channel would be responsible for
handling receive traffic, so it would read one or more bytes from the UART for each
request. The second DMA channel would be responsible for handling the transmit traffic,
so it would write one or more bytes to the UART for each request. When the entire
transmit or receive DMA movement is complete the DMA can interrupt the core to notify
it of the completion. In this approach the CPU has no loading associated with the actual
data movement. All of the CPU loading is the result of the initial configuration of both
the UART and DMA modules and then any processing of data that is required to prepare
it for transmission or interpret it after reception.

12.4 UART RS-232 hardware implementation

The diagram below shows a block diagram of the hardware connections for an RS-232
implementation. The diagram shows the optional hardware flow control signals, but only
the RX and TX data connections are required.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 109

UART RS-232 hardware implementation

UART RS-232 Xcvr Connector

e —— REllY RS232_TXD
UARTN_RX G R10UT RS232_RXD
S —— RPN RS232_RTS
RS232 CTS

UARTNn_CTS S R20UT

Figure 12-1. UART RS-232 hardware connections block diagram

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
110 Freescale Semiconductor, Inc.

Chapter 13
ENET Module

13.1 Overview

The following chapter demonstrates how to use the media access controller (MAC) called
ENET to connect to a generic external Ethernet physical transceiver (also called PHY).
The following examples show how they connect to each other (hardware) and the
registers (software) that link up to a network.

13.1.1 Introduction

The MAC-NET controller is one of the communication interfaces included with the
Kinetis family. The following block diagram represents how the MAC-NET fits in the
system to connect to a local area network.

MI/RMII ——
MAC-NET ” Generic ETH PHY ” Maanetics - J“a

Interface ? H A
T ¢ Some RJ45

manufacturers offer this
Clock Status in a single component

Kinetis MCU LEDs

Figure 13-1. MAC-NET block diagram

The MAC-NET controller has three main components:
* MAC Controller—Controls the buffers and registers. Controls the MII /RMII
Interface, and IEEE 15888 controller.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 111

A
Overview
e MII/RMII Interface— Interacts with the ETH PHY. It works in two modes. MII and
RMIL.
* IEEE1588 Controller—Adds time stamping and enhanced timer support for Ethernet
controller.

The following figure represents how the MAC-NET interfaces with internal SoC
connections. Each component has its own clock.

MIl: EXTAL can be any value ENET_RCRIRNE_MOCE]
RMII: EXTAL and PHY clk must be MIID_TXCLK

50MHz MII0_RXCLK
i 25MHz
50MHz
CLK
EXTAR System | | PLL »| OUTDI4 | Core Clk
g CLK
XTAL® OsC MCG)
«—»ETH PHY,
ENET_1588_CLKIN _~ MAC-NET Controller
PTE26
(PTE26)™ | ASSIGNMENT Timer
(ALT4) * Channels
SIM_SOPTZ2 (4)

[TIMESRC]
Figure 13-2. MAC-NET interfaces

The following sections describes some modes of operations and how the module needs to
be configured.

13.1.2 Features

The MAC-NET key value-add components are as follows:
* The MAC-NET controller is compatible with the FEC controller present in previous
ColdFire MCUs and MPUs and low-end PPC like the MPC5553/4.
* The hardware acceleration block helps software implementation with:
* [Pv4 and IPv6 support
* [P, TCP, UDP, and ICMP checksum generation and checking

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

112 Freescale Semiconductor, Inc.

4
Chapter 13 ENET Module
» Configurable discard of erroneous frames
» Configurable Ethernet payload alignment to allow for 32-bit word aligned header
and payload processing

* Industrial communication can require the use of time synchronization between
distributed nodes. The MAC-NET provides support for the IEEE1588 standard to
overcome one of the drawbacks of Ethernet.

13.2 Configuration examples
When using the MAC-NET interface, most of the time it runs over an RTOS. Regardless
of the type of RTOS, some generic modes need to be defined and followed before
integrating to an existing software. The main 4 modes of operations are as follows:

* Basic Initialization—basic steps needed to run the MAC-NET.

* PHY Management Interface—configuration needed to get/set PHY configurations

* MII—media independent interface to the PHY

* RMII—reduced media independent interface to the PHY

13.2.1 Basic MAC-ENET initialization for a generic TCP/IP stack

Basic initialization is needed when configuring the MAC-NET controller.

13.2.1.1 Code example and explanation

The following list is a sequence of steps needed to correctly configure the ENET
interface.

Enable ENET clock and disable the MPU

Configure buffer descriptions (BD) in little endian

Reset MAC controller

Configure pins MII or RMII mode

Clear and unmask ENET xmit, rx, and error interrupts. Set interrupt level and priority
Take network speed and duplex from PHY, then configure ENET accordingly
Configure MAC address with hash support

Point MAC-ENET to xmit and Rx BD. Configure maximum packet size

Start MAC-ENET controller

Set ENET ready to receive

SCOXIAN B L=

[E—

Example code:

/* Buffer Descriptor Format */
#ifdef ENHANCED_BD

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 113

A
Configuration examples

typedef struct

uintlé_t status; /* control and status */
uintl6_t length; /* transfer length */
uint8 t *data; /* buffer address */

uint32_t ebd status;
uintlé t length proto type;
uintlé t payload checksum;
uint32 t bdu;
uint32_t timestamp;
uint32 t reserverd wordl;
uint32 t reserverd word2;
} NBUF;

#else
typedef struct

uintlé_t status; /* control and status */
uintl6 t length; /* transfer length */
uint8 t *data; /* buffer address */
} NBUF;

#endif /* ENHANCED BD */

static void enet init ()
int usData;
const unsigned portCHAR ucMACAddress[6] =

configMAC_ADDRO,
configMAC_ADDR1, configMAC_ADDR2, configMAC ADDR3, configMAC_ADDR4, configMAC_ADDR5

7

/* Enable the ENET clock. */
SIM SCGC2 |= SIM_SCGC2_ ENET MASK;

/*FSL: allow concurrent access to MPU controller. Example: ENET uDMA to SRAM, otherwise
bus error*/
MPU CESR = 0;

prvInitialiseENETBuffers() ;

/* Set the Reset bit and clear the Enable bit */
ENET ECR = ENET_ ECR_RESET MASK;

/* Wait at least 8 clock cycles */
for(usData = 0; usData < 10; usData++)

asm("NOP");

}

/*FSL: start MII interface*/
mii init (0, periph clk _khz/1000/*MHz*/) ;

//enet_interrupt routine

set_irq priority (76, 6);

enable irg(76);//ENET xmit interrupt
//enet_interrupt routine

set_irq priority (77, 6);

enable irqg(77);//ENET rx interrupt

//enet interrupt routine

set irq priority (78, 6);

enable irqg(78) ;//ENET error and misc interrupts

/*

* Make sure the external interface signals are enabled

*/
PORTB_PCRO = PORT PCR MUX(4);//GPIO;//RMII0 MDIO/MIIO MDIO
PORTB_PCR1 = PORT_PCR_MUX(4);//GPIO;//RMIIO_MDC/MIIO_MDC

#if configUSE MII MODE
PORTA PCR14 = PORT PCR MUX (4);//RMII0O_CRS_DV/MIIO RXDV

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

114 Freescale Semiconductor, Inc.

PORTA PCR5 =
PORTA PCR12 =
PORTA PCR13 =
PORTA_PCR15 =
PORTA PCR16 =
PORTA PCR17 =
PORTA PCR11 =
PORTA_PCR25 =
PORTA PCR9 =
PORTA_PCR10 =
PORTA PCR28 =
PORTA_PCR24 =
PORTA PCR26 =
PORTA PCR27 =
PORTA PCR29 =

#telse

PORTA PCR14 =
PORTA _PCR5 =
PORTA_PCR12 =
PORTA_PCR13 =
PORTA PCR15 =
PORTA_PCR16 =
PORTA_PCR17 =

#endif

PORT_ PCR_MUX (4)
PORT PCR_MUX (4)
PORT PCR_MUX (4)
PORT PCR_MUX (4)
PORT_ PCR_MUX (4)
PORT PCR_MUX (4)
PORT PCR_MUX (4)
PORT PCR_MUX (4)
PORT_ PCR_MUX (4)
PORT PCR_MUX (4)
PORT PCR_MUX (4)
PORT PCR_MUX (4)
PORT_ PCR_MUX (4)
PORT PCR_MUX (4)
PORT PCR_MUX (4)

PORT_ PCR_MUX (4)
PORT PCR_MUX (4)
PORT PCR_MUX (4)
PORT PCR_MUX (4)
PORT_ PCR_MUX (4)
PORT PCR_MUX (4)
PORT PCR_MUX (4)

/* Can we talk to the PHY? */

do

;//RMITO RXER/MIIO RXER
;//RMITO RXD1/MII0 RXD1
;//RMITO RXDO/MIIO RXDO
;//RMII0 TXEN/MIIO TXEN
;//RMITIO_TXDO/MIIO_ TXDO
;//RMITO TXD1/MII0 TXD1

;//MIIO0 RXCLK
;//MIIO_TXCLK
;//MIT0_RXD3
;//MITO_RXD2
;//MII0_TXER
;//MIIO_TXD2
;//MII0_TXD3
;//MIIO_CRS
;//MIIO0_COL

;//RMITIO_CRS DV/MIIO0_RXDV
;//RMITO RXER/MIIO RXER
;//RMITO0 RXD1/MII0 RXD1
;//RMII0 RXDO/MIIO RXDO
;//RMITIO TXEN/MIIO TXEN
;//RMITO TXDO/MIIO TXDO
;//RMITO0_TXD1/MII0 TXD1

RTOS_DELAY(netifLINK_DELAY) ;
usData = Oxffff;

mii read(O,

} while(usData == Oxffff);

/* Start auto negotiate. */
ConfigPHY_ADDRESS, PHY BMCR,

mii write(O,

configPHY ADDRESS,

/* Wait for auto negotiate to complete. */

do

RTOS_DELAY(netifLINK_DELAY) ;
mii read(0, configPHY ADDRESS, PHY BMSR, &usData) ;

PHY PHYIDRI,

&usData) ;

Chapter 13 ENET Module

(PHY BMCR AN RESTART | PHY BMCR AN ENABLE));

} while(! (usData & PHY BMSR_ AN COMPLETE)
/* When we get here we have a link - find out what has been negotiated. */
usData = 0;
mii read(0, configPHY ADDRESS, PHY STATUS, &usData);
/* Clear the Individual and Group Address Hash registers */
ENET IALR = 0;
ENET IAUR = 0;
ENET GALR = 0;
ENET GAUR = 0;
/* Set the Physical Address for the selected ENET */
enet set address(0, ucMACAddress) ;
#if configUSE_MII_MODE
/* Various mode/status setup. */
ENET RCR = ENET RCR _MAX FL(configENET RX BUFFER SIZE) | ENET RCR MII MODE MASK |

ENET RCR CRCFWD MASK;

#else

ENET RCR = ENET_RCR_MAX_FL(configENET RX BUFFER_SIZE)
ENET RCR_CRCFWD MASK | ENET RCR RMII MODE MASK;

#endif

/*FSL: clear rx/tx control registers*/

ENET TCR = 0;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

| ENET RCR_MII MODE MASK |

Freescale Semiconductor, Inc.

115

Configuration examples

/* Setup half or full duplex. */
if (usData & PHY DUPLEX STATUS)

/*Full duplex*/
ENET RCR &= (unsigned portLONG)~ENET RCR_DRT MASK;
ENET _TCR |= ENET TCR _FDEN MASK;

else

/*half duplex*/

ENET RCR |= ENET RCR DRT MASK;

ENET TCR &= (unsigned portLONG)~ENET TCR FDEN MASK;
!
/* Setup speed */
if (usData & PHY SPEED STATUS)

/*10Mbps*/
ENET RCR |= ENET RCR RMII_ 10T MASK;
#if (configUSE_PROMISCUOUS MODE == 1)
ENET RCR |= ENET RCR PROM MASK;
!
#endif

#ifdef ENHANCED_ BD

ENET ECR = ENET ECR_EN1588 MASK;
#telse

ENET ECR = 0;
#endif

/* Set Rx Buffer Size */
ENET MRBR = (unsigned portSHORT) configENET RX BUFFER_SIZE;

/* Point to the start of the circular Rx buffer descriptor queue */
ENET RDSR = (unsigned portLONG) &(xENETRxDescriptors[0]);

/* Point to the start of the circular Tx buffer descriptor queue */
ENET TDSR = (unsigned portLONG) xENETTxDescriptors;

/* Clear all ENET interrupt events */
ENET EIR = (unsigned portLONG) -1;

/* Enable interrupts */

ENET EIMR = ENET ETIR TXF MASK | ENET EIMR RXF MASK | ENET EIMR RXB MASK |
ENET EIMR UN MASK | ENET EIMR RL MASK | ENET EIMR LC MASK | ENET EIMR BABT MASK |
ENET EIMR_BABR MASK | ENET EIMR EBERR MASK;

/* Create the task that handles the MAC ENET RX */
/* RTOS + TCP/IP stack dependent */

/* Enable the MAC itself. */
ENET ECR |= ENET ECR _ETHEREN MASK;

/* Indicate that there have been empty receive buffers produced */
ENET_RDAR = ENET RDAR RDAR_MASK;

}

static void prvInitialiseENETBuffers(void)

{

unsigned portBASE TYPE ux;
unsigned char *pcBufPointer;

pcBufPointer = &(xENETTxDescriptors unaligned[0]);

while(((unsigned long) pcBufPointer & O0x0fUL) != 0)
pcBufPointer++;

}

XENETTxDescriptors = (NBUF *) pcBufPointer;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

116 Freescale Semiconductor, Inc.

Chapter 13 ENET Module

pcBufPointer = &(xENETRxDescriptors unaligned[0]);

while(((unsigned long) pcBufPointer & 0x0fUL) != 0)
{
pcBufPointer++;
XENETRxDescriptors = (NBUF *) pcBufPointer;
/* Setup the buffers and descriptors. */
pcBufPointer = &(ucENETTxBuffers[0]);
while(((unsigned long) pcBufPointer & 0x0fUL) != 0)
{
pcBufPointer++;
for(ux = 0; ux < configNUM_ENET_TX BUFFERS; ux++)
XENETTxDescriptors[ux].status = TX BD TC;
#ifdef NBUF LITTLE ENDIAN
XENETTxDescriptors|[ux].data = (uint8_t *)_ REV((uint32_t)pcBufPointer);
#else
XENETTxDescriptors[ux].data = pcBufPointer;
#endif

pcBufPointer += configENET_TX_ BUFFER_SIZE;

XENETTxDescriptors|[ux].length = 0;

#ifdef ENHANCED BD

XENETTxDescriptors[ux].ebd status = TX BD IINS | TX BD PINS;
#endif

}

pcBufPointer = &(ucENETRxBuffers[0]);
while(((unsigned long) pcBufPointer & OxO0fUL) != 0)

pcBufPointer++;

}

for(ux = 0; ux < configNUM ENET_RX BUFFERS; ux++)

XENETRxDescriptors[ux].status = RX BD E;

XENETRxDescriptors[ux].length = 0;

#ifdef NBUF LITTLE ENDIAN

XENETRxDescriptors|[ux].data = (uint8 t *) REV((uint32 t)pcBufPointer);
#else

XENETRxDescriptors[ux].data = pcBufPointer;

#endif

pcBufPointer += configENET RX BUFFER SIZE;
#ifdef ENHANCED BD

XENETRxDescriptors[ux] .bdu = 0x00000000;
XENETRxDescriptors|[ux].ebd status = RX_BD_INT;
#endif

}

/* Set the wrap bit in the last descriptors to form a ring. */
XENETTxDescriptors|[configNUM_ENET TX BUFFERS - 1].status |= TX BD W;
XENETRxDescriptors[configNUM ENET RX BUFFERS - 1].status |= RX BD W;

uxNextRxBuffer = 0;
uxNextTxBuffer = 0;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 117

PHY management interface

13.3 PHY management interface

The PHY management interface is the path to communicate to the PHY control/status
registers which describes the network. Communication between the MAC-NET and the
PHY is made by 2 signals:

* One clock generated from the ENET interface for the PHY. Clock cannot be greater
than 2.5 MHz and is controlled by register ENET_MSCR[MII_SPEED] divider
which uses peripheral clock as reference.

* One bidirectional signals which sends/receives data to/from the PHY.

13.3.1 Code example and explanation

The following example code starts the PHY management interface that starts the auto-
negotiation process from the PHY to the network.

Example code:

void
enet start mii(void)

PORTB_PCRO
PORTB_PCR1

- PORT PCR_MUX (4) ;//GPIO;//RMII0_MDIO/MIIO_MDIO
= PORT_PCR_MUX(4);//GPIO;//RMIIO_MDC/MIIO_MDC
/*FSL: start MII interface*/

mii init (0, periph clk khz/1000/*MHz*/) ;

/* Can we talk to the PHY? */
do

{

vTaskDelay (netifLINK DELAY) ;
usData = Oxffff;
mii read(0, configPHY ADDRESS, PHY PHYIDR1, &usData) ;

} while(usData == Oxffff);

/* Start auto negotiate. */
mii write(0, configPHY ADDRESS, PHY BMCR, (PHY BMCR AN RESTART | PHY BMCR AN ENABLE));

}

void
mii_init (int ch, int sys_clk_mhz)

ENET MSCR/*(ch)*/ = 0
#ifdef TSIEVB/*TSI EVB requires a longer hold time than default 10 ns*/
| ENET MSCR_HOLDTIME (2)
#endif
| ENET _MSCR_MII_SPEED((2+*sys_clk mhz/5)+1)

1

}

int
mii write(int ch, int phy addr, int reg addr, int data)

{

int timeout;

/* Clear the MII interrupt bit */

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
118 Freescale Semiconductor, Inc.

4
Chapter 13 ENET Module

ENET EIR/*(ch)*/ = ENET EIR MII MASK;

/* Initiatate the MII Management write */
ENET MMFR/*(ch)*/ = 0

| ENET_MMFR_ST (0x01)

| ENET MMFR_OP (0x01)

| ENET MMFR PA (phy addr)

| ENET MMFR RA (reg_addr)
|
|

ENET MMFR_TA (0x02)
ENET MMFR_DATA (data) ;

/* Poll for the MII interrupt (interrupt should be masked) */
for (timeout = 0; timeout < MII_ TIMEOUT; timeout++)

if (ENET_EIR/*(ch)*/ & ENET _EIR MII MASK)
break;

}

if (timeout == MII_ TIMEOUT)
return 1;

/* Clear the MII interrupt bit */
ENET EIR/*(ch)*/ = ENET EIR MII MASK;

return O;

/**/
int
mii_read(int ch, int phy_addr, int reg_addr, int *data)

{

int timeout;

/* Clear the MII interrupt bit */
ENET EIR/*(ch)*/ = ENET EIR MIT_ MASK;

/* Initiatate the MII Management read */
ENET MMFR/* (ch)*/ = 0

| ENET MMFR_ST(0x01)

| ENET MMFR OP (0x2)

| ENET MMFR PA (phy addr)

| ENET_MMFR_RA(reg_addr)

| ENET MMFR _TA (0x02) ;

/* Poll for the MII interrupt (interrupt should be masked) */
for (timeout = 0; timeout < MII_ TIMEOUT; timeout++)

if (ENET_EIR/*(ch)*/ & ENET EIR MII_ MASK)
break;

}

if (timeout == MII_ TIMEOUT)
return 1;

/* Clear the MII interrupt bit */
ENET EIR/*(ch)*/ = ENET EIR MII MASK;

data = ENET MMFR/ (ch)*/ & Ox0000FFFF;

return 0O;

}

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 119

MIl mode

13.4 MIl mode

The media independent interface (MII) is a configuration mode that requires 18 signals to
communicate to a generic PHY. The MII operates at 25 MHz. The synchronization
signals are part of the MII external signals provided by the Ethernet PHY.

13.4.1 Code example and explanation

The following example code shows the registers needed to configure the MAC-NET
controller in MII mode.

PORTA PCR14 = PORT PCR MUX (4 //RMIIO CRS_DV/MIIO0_RXDV

PORTA_PCR5
PORTA_ PCR12
PORTA PCR13
PORTA PCR15
PORTA_PCR16
PORTA PCR17
PORTA PCR11
PORTA PCR25
PORTA_PCR9
PORTA PCR10
PORTA PCR28
PORTA PCR24
PORTA_PCR26

PORT_PCR_MUX
PORT PCR_MUX
PORT PCR_MUX
PORT PCR_MUX
PORT PCR_MUX
PORT PCR_MUX
PORT PCR_MUX
PORT PCR_MUX
PORT PCR_MUX
PORT PCR_MUX
PORT PCR_MUX
PORT PCR_MUX
PORT PCR_MUX

//RMIIO RXER/MIIO_RXER

) //RMIIO RXD1/MIIO0_ RXD1

;//RMITO RXDO/MIIO RXDO
;//RMITO TXEN/MIIO TXEN
;//RMITI0_TXDO/MIIO_ TXDO

;//MIT0_RXCLK
;//MITO_TXCLK
;//MII0_RXD3

) //MIT0 RXD2

;//MITO0_TXER
;//MITO_TXD2
;//MIIO0_TXD3

) //RMIIO TXD1/MIIO_ TXD1

PORTA PCR27

_ PORT PCR_MUX
PORTA_ PCR29

PORT PCR_MUX

) //MII0_CRS
;//MIIO0_COL

S

ENET RCR = ENET RCR_MAX FL(configENET RX BUFFER_SIZE)
ENET RCR _CRCFWD MASK;

| ENET RCR MII MODE MASK |

13.4.1.1 Hardware implementation

The following figure shows the connection needed from the MAC-NET pins to a generic
Ethernet PHY in MII mode.

In MII mode, Rx and Tx are synchronous to MIIO_RXCLK and MII0_TXCLK
respectively. There is no additional requirement from the MAC-NET to synch from the
PHY to the MII/RMII interface. The PHY data sheet must be followed for all electrical
requirements.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

120 Freescale Semiconductor, Inc.

Chapter 13 ENET Module

MI10_MDC/RMIIO_MDC ———>
MII0_MDIO/RMIIO_MDIO <«——>

MIIO_RXD[3:2] <24—
MII0_RXD[1:0/RMII0_RXD[1:0] <24
MII0_RXDV/RMII0_CRS_DV <——]
MII0_RXCLK <——
MII0_RXER/RMII0_RXER <———
MIIO_TXCLK <—
MIIO_TXEN/RMIIO_TXEN — >
MIIO_TXD[3:2] — 24—
MIIO_TXD[1:0/RMII0_TXD[1:0] — 2
MII0_CRS <—

MII0_COL <——|

MDC
MDIO

RXD[3:2]
RXD[1:0]

RXDV/CRSDV*

RXCLK
RXERR
TXCLK
TXEN
TXD[3:2]
TXD[1:0]
CRS*
coL

INT RST

%

To
Magnetics/
RJ45

Kinetis MII/RMII
interface: 17 signals

Vo |

RSTIN

pin

Serial
management
Differential [RX—
Rx | RX+
Differential [TX—
TX+
MI/RMII -
interface _
. ACT
(o]
LINK
LEDs | speep
X0 X VDD GND
N/C T
25MHz

0oscC

Figure 13-3. MIl connection

NOTE

The “ * ” indicates special precautions that must be taken for a
each specific Ethernet PHY manufacturer. The CRSDV
function may be located in either pin.

NOTE

The TXER signal is not required for this example, this is why
there are 17 signals and not 18.

13.5 RMII mode

The reduced media independent interface (RMII) is a configuration mode that requires
nine signals to communicate to a generic PHY. The RMII operates at 50 MHz and
requires synchronization between the PHY and the ENET RMII interface clock input
(EXTAL). Depending on the PHY specifications, the clock options used by the MCU can

be:
* PHY clock input
* PHY clock output if provided

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc.

121

RMII mode

13.5.1 Code example and explanation

The following example code shows the registers needed to configure the MAC-NET
controller in RMII mode.

Example code:

PORTA PCR14
PORTA_PCR5
PORTA_PCR12
PORTA PCR13
PORTA_PCR15
PORTA PCR16

PORT_PCR_MUX
PORT PCR_MUX
PORT PCR_MUX
PORT_PCR_MUX
PORT_PCR_MUX
PORT PCR_MUX

;//RMITO CRS DV/MII0O RXDV
//RMIIO RXER/MIIO0 RXER
//RMII0 RXD1/MIIO RXD1
;//RMIIO RXDO/MIIO RXDO
;//RMITO TXEN/MIIO TXEN
;//RMITO TXDO/MIIO TXDO

7
7

(4)
(4)
(4)
(4)
(4)
(4)
(4)

PORTA_PCR17 = PORT_PCR_MUX (4) ;//RMII0_TXD1/MIIO_TXD1
ENET RCR = ENET RCR_MAX FL(configENET RX BUFFER_SIZE)

ENET RCR_CRCFWD_MASK | ENET RCR RMII_MODE_MASK;

| ENET RCR_MII MODE MASK |

13.5.1.1 Hardware implementation

The following two figures show the connection needed from the MAC-NET pins to any
generic Ethernet PHY's in RMII mode.

The connection from the RMIIO_CRS_DV is dependent on the PHY implementation. In
the first figure, the RMIIO_CRS_DYV signal is connected to the RXDV/CRSDYV pin.

MII0_MDC/RMII0_MDC ——>| MDC | serial
MI10_MDIO/RMII0_MDIO <<— MDIO management
RXDI[3:2] Differential [RX—
%
MIIO_RXD[1:0]/RMII0_RXD[1:O]<ﬁ2; RXD[1:0] Rx | RX+ To
MII0_RXDV/RMII0_CRS_DV <«——— RXDV/CRSDV* N Magnetics/
RXCLK Differential TX- RJ45
MII0_RXER/RMII0_ RXER «—— RXERR MIVRMII | TX+
TXCLK interface —
MIIO_TXEN/RMIIO_TXEN ——> TXEN ACT |—>
TXD[3:2] To LINK ——>
MIIO_TXD[1:0)/RMII0_TXD[1:0] ﬁzg TXD[1:0] LEDs SPEED [——>
CRS* —
coL]
INT RST X0 Xl VDD GND
Kinetis MII/RMII
interface: 9 signals ¢ T ‘ T
N/C N/C
RSTIN 50MHz

pin osc

Figure 13-4. RMIl mode connection example 1

The RMIIO_CRS_DYV is connected to the CRS/CRSDV. Hardware designs need to be
taken into consideration depending on the specific PHY used.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc.

122

Chapter 13 ENET Module

MII0_MDC/RMIIO_MDC ———>
MII0_MDIO/RMIIO_MDIO <«——>

MII0_RXD[1:0)/RMII0_RXD[1:0] <—24—]

MII0_RXER/RMIIO_RXER <—
MIO_TXEN/RMIIO_TXEN ———>

MIIO_TXD[1:0/RMIIO_TXD[1:0] — 24 »
MII0_RXDV/RMII0_CRS_DV <«——

MDC
MDIO

RXD[3:2]
RXD[1:0]
RXDV*
RXCLK
RXERR
TXCLK
TXEN
TXD[3:2]
TXD[1:0]
CRS/CRSDV*

coL]
INT RST

Serial
management
Differential [RX—
Rx | RX+
Differential [TX—
Tx TX+
MI/RMII -
interface _
. ACT
(o]
LINK
LEDs | Speep
X0 X VDD GND

<~
To
Magnetics/

RJ45
———>

Kinetis MII/RMII
interface: 9 signals

Vo |

RSTIN

pin

w |

50MHz

0scC

Figure 13-5. RMIl mode connection example 2

NOTE
The “ * ” indicates special precautions that must be taken for a
each specific Ethernet PHY manufacturer. The CRSDV
function may be located in either pin.

The hardware considerations from the PHY to the Ethernet Magnetics or the RJ45
connector are supplied from the PHY manufacturer.

13.6 PCB Design Recommendations

ENET interface signals function at 25 or 50 MHz. Design guidelines must be followed.

13.6.1 Layout Guidelines

Each vendor implementation guide must be closely followed. The quality of the Ethernet
connection is many times dependent on board routing, magnetics quality, and the
configured mode of operation for the PHY.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc.

123

PCB Design Recommendations

13.6.1.1 General Routing and Placement

Use the following general routing and placement guidelines when laying out a new
design for the ENET.

* Series termination guidelines must be placed as close as possible to the origin of the
signal. This must be followed by PHY and ENET outputs.

* When working in RMII mode, a 50 MHz external reference must be connected to the
EXTAL pin. Then the MII/RMII interface is able to communicate with the PHY,
which uses the same clock. If your PHY clock presents an output delay (compared to
the input clock), this delay must be properly matched (frequency and phase) to the
EXTAL pin, or data corruption occurs. Some PHY's output a 50 MHz clock which
must be used for the MCU EXTAL pin. Follow your PHY specifications and
considerations for the RMII mode.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
124 Freescale Semiconductor, Inc.

Chapter 14
USB Device Charger Detection (USBDCD) Module

14.1 Overview

This chapter intends to show the general configuration sequence and the service routines
needed to be able to detect the host type and charger that is connected to the USB
module.

14.1.1 Introduction

The USB battery charger specification defines limits, detection, control, and reporting
mechanisms that permit devices to draw current in excess of the USB 2.0 specification
for charging or powering up from dedicated chargers, hosts, and hubs, and for charging
downstream ports. These mechanisms are backward-compatible with USB 2.0 compliant
hosts and peripherals. The USB ports on personal computers are convenient places for
portable devices to draw current for charging their batteries. This convenience has led to
the creation of USB chargers that expose a USB standard-A receptacle. This allows
portable devices to use the same USB cable to charge from either a PC or from a USB
charger. Freescale Kinetis microprocessors include a device charger detection (DCD)
module capable of identifying if the device is connected to a PC host or to a USB
dedicated charger.

14.1.2 Features

The USBDCD module works with the USB transceiver to detect if the USB device is
attached to a charging port (either a dedicated charging port or a charging host). The
system software coordinates the detection activities of the module and controls an off-
chip integrated circuit that performs the battery charging. The main features of the DCD
module are the following:

» USB battery charger specification compliant (rev 1.1)

e Programmable timing parameters

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 125

Module Configuration

* Uses the same D+ and D- signals as the USB module
» Enables rechargeable batteries usage
* Low power operation

14.1.3 Battery charger specification

The USB battery charger specification establishes three different types of downstream
ports:

e Standard Downstream Port

Refers to a downstream port on a device that complies with the USB 2.0 definition of
a host or hub. A standard downstream port expects a downstream device to draw:

* less than a 2.5 mA average when disconnected or suspended
* up to 100 mA maximum when connected and not suspended
* up to 500 mA maximum if configured and not suspended

* Charging Downstream Port

A charging downstream port is a downstream port on a device that complies with the
USB 2.0 definition of a host or a hub. It can supply a maximum of 1.5 A to a low/full
speed port and 900 mA to a high speed port.

* Dedicated Charger

A dedicated charging port is a downstream port on a device that outputs power
through a USB connector, but is not capable of enumerating a downstream device. A
dedicated charging port is able to supply a maximum of 1.8 A. A dedicated charging
port is required to short the D+ line to the D- line.

In other words, the amount of current that the device is able to draw to charge the system
batteries depends on the type of downstream port it is connected to.

14.2 Module Configuration

14.2.1 Module dependencies
The DCD module depends on other modules to operate correctly:

Clock Source

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

126 Freescale Semiconductor, Inc.

e
Chapter 14 USB Device Charger Detection (USBDCD) Module
The DCD module needs a 48 MHz clock. This clock is the same as that applied to the
USB module, but the DCD has its own clock gating bit in the SIM_SCGC6 register.
Make sure that the USBDCD bit is set to enable the clock source to the DCD module.

I/0 Signal

The DCD module needs to know when the USB connector is plugged in. This can be
made using an I/O signal measuring the status of the VBUS line of the USB connector.
When the VBUS line becomes high, the software must call the start sequence routine of
the DCD module. (see I/O section for more details of the pin configuration).

USB Module

The host detection sequence ends after the pullup resistor is enabled in the D+ signal.
Only the USB module can enable this pullup. The USB module needs to be pre-
initialized to enable the pullup (when needed) and start the USB enumeration process if
required (only if detection results on a standard host or charging host type).

Voltage Regulator

The USB transceiver power line comes directly from the VOUT33 (voltage regulator
output). Therefore the regulator must be enabled to make sure that the pull-up is present
when needed.

14.3 DCD hardware implementation

The basic connection to use the DCD module is the differential lines routed to the USB
connector, with the proper coupling resistors and an I/O signal sensing the VBUS pin.
Remember that the Kinetis family has 5 V tolerant pins, meaning that there is no need to
add a level shifter or resistor divider to sense the VBUS line.

LISB

Connector YEBLUS Sense oo
I Port
LSE DF
I USB 2.0
| Full speed

1 .

LILTLIL

Figure 14-1. DCD hardware diagram

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 127

Example code

14.4 Example code

The DCD example code sends a message to a terminal showing what type of host is
attached to the USB module. To be able to test the three different types of hosts it is
necessary to have a special tool. Because the standard is new only a few companies have
support for this. The tool that Freescale uses is the Allion USB battery Charging Test
feature. Using this tool and a regular PC is enough to emulate any host and test the DCD
module. For more information about the Allion USB battery Charging Test feature, go to:
http://www.allion.com/TestTool/USB_Charging.pdf

The code waits until the USB cable is attached, sending 5 V to PTBO. After the software
detects the rising edge in the VBUS signal, starts the DCD detection sequence, and waits
until the sequence is completed or the module sends an error notification.

The next three windows show the result of each host type.

STE 0

Fle Edt Setup Control Window Help Fie Edd Zetup Control Window Help

Coftware Reset Software Reset

rew B

rev B 11 iz —Flas I =
Full size P—flash 128 kBytes of RAM Full aize P-Flash 128 kBytes of RAN

—=Debuy Fins OH-- ——Debug Pins ON—-

N . wummnswswunsn USHE DCD Module Test frg s
I use :El.-[l Module Testing e Connected to a Dedicated Charger
Connected to a Charging Hostl]

B CoM1:115200baud - Tera Term YT =10 x|

Ele Edt Setup Control Window Help

reu B

Full zize P—flash 128 kBytez of RAH

~=Debug Pins ON--

waasaias JSE DCD Module Testing sss-sseses
Connected to a Standard Host

Figure 14-2. DCD demo results

Software Explanation—The software is simple. This section will explain in detail how to
set the clocks, USB, and I/O pins to run the DCD example.

1. First, configure one I/O pin as input. In this example PTBO is used for the VBUS
detection.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

128 Freescale Semiconductor, Inc.

http://www.allion.com/TestTool/USB_Charging.pdf

Chapter 14 USB Device Charger Detection (USBDCD) Module

FLAG_SET (SIM SCGC5_PORTB_SHIFT,SIM SCGC5);// Enable clock for PTB
PORTB_PCRO= (0| PORT _PCR MUX(1));// configure PTBO as I/O pin

2. Next, enable the USB and the DCD clock gating bits in the SIM.

/* SIM Configuration */
SIM SCGC4 |=(SIM SCGC4 USBOTG MASK) ; // USB Clock Gating
SIM_SCGC6 | = (SIM_SCGC6 USBDCD_MASK) ; // USB Clock Gating

3. Pre-initialize the USB. This is required to enable the pullup resistor that is controlled
by the USB module.

// USB pre-initialization

USBOTG_USBTRCO | =USBOTG_USBTRCO_USBRESET MASK;

while (FLAG CHK (USBOTG USBTRCO USBRESET SHIFT,USBOTG USBTRCO)){};
FLAG_SET(USBOTG_ISTAT_USBRST_MASK,USBOTG_ISTAT);

// Enable USB Reset Interrupt

FLAG_SET (USBOTG_INTEN USBRSTEN SHIFT,USBOTG INTEN) ;
USBOTG_USBCTRL=0x00;

USBOTG_USBTRCO | =0x40;

USBOTG_CTL|=0x01;

4. Configure the DCD clock register.

USBDCD_CLOCK= (DCD_TIME_BASE<<2) |1;

5. At this point the application is polling the PTBO pin for VBUS detection, but a port
interrupt can also be used to avoid polling method.

// Waiting for VBUS
if(FLAG_CHK(O,GPIOB_PDIR) && !FLAG CHK(VBUS Flag,gu8InterruptFlags))

USBDCD_CONTROL=USBDCD_CONTROL IE MASK | USBDCD CONTROL IACK MASK;
FLAG_SET (USBDCD_CONTROL_START SHIFT,USBDCD CONTROL) ;
FLAG_SET (VBUS_Flag,gu8InterruptFlags) ;

}
6. Finally, when the detection sequence is completed the application needs to read the

results in the DCD registers and send them to the terminal.

// DCD results
if (FLAG_CHK(DCD Flag,gu8InterruptFlags))

{

u8Error=DCD_GetChargerType () ;

if ((UBError&0xFO0))
printf ("Ooooocops DCD Error") ;
else
{
if ((UBError&0x0F) ==STANDARD_ HOST)
printf ("Connected to a Standard Host") ;
if ((uBError&0x0F)==CHARGING HOST)
printf ("Connected to a Charging Host") ;
if ((uBError&0x0F)==DEDICATED CHARGER)
printf ("Connected to a Dedicated Charger") ;

}
The function that returns the charger type result is:

UINT8 DCD_GetChargerType (void)

{
UINT8 u8ChargerType;
u8ChargerType = (UINTS8) ((USBDCD_ STATUS & USBDCD_STATUS SEQ RES MASK) >>16) ;
u8ChargerType |= (UINT8) ((USBDCD STATUS & USBDCD_STATUS FLAGS MASK) >>16) ;
return (u8ChargerType) ;

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 129

Example code
The DCD interrupt service routine:

void DCD_TSR(void)

USBDCD_CONTROL |= USBDCD CONTROL_IACK MASK; // ackowledge

if ((USBDCD_STATUS&0x000C0000) == 0x00080000)
FLAG_SET (USBOTG_CONTROL_DPPULLUPNONOTG SHIFT,USBOTG CONTROL); // enable pullup
if ((! (USBDCD_STATUS & 0x00400000)) || (USBDCD_STATUS & 0x00300000))
FLAG SET (DCD_Flag,gu8InterruptFlags) ; // charger detection completed
}

The example code included in this user guide is for
demonstration purposes only. For general-purpose applications,
please download Freescale USB stack with PHDC support or
Freescale MQX Software Solutions from http://
www.freescale.com/usb.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
130 Freescale Semiconductor, Inc.

http://www.freescale.com/usb
http://www.freescale.com/usb

Chapter 15
Universal Serial Bus OTG Module

15.1 Introduction

The Universal Serial Bus (USB) is a serial bus standard for communicating between a
host controller and different types of devices. USB has become the standard connection
method for PCs, PDAs, and video games, and more recently has been used on power
cords. This is because USB can connect printers, keyboards, mice, game devices,
communication devices, storage devices, and custom devices. USB 2.0 full-speed allows
12 Mbit/s communication between the host controller and the device.

15.2 Features
» USB Full Speed 2.0 compliant (12 Mbit/s)
* Dual role operation
* 16 double-buffered bidirectional endpoints
e On-chip USB full-speed PHY
* Integration with device charger detection (DCD) module
* 120 mA on-chip regulator for MCU and external components

15.3 USB operation modes
Device Mode

The USB is configured to respond to external host requests. In this mode the MCU has no
control of the USB bus. All the transfers are started by the Host controller that is also
providing the VBUS voltage. The DCD was designed to run together with this USB
mode. First, the DCD detects the host type and after the USB takes the control of the D+
and D- signals.

Kinetis Quick Reference User Guide, Rev. 2, 08/2012

Freescale Semiconductor, Inc. 131

Voltage regulator operation modes

Device

v

Figure 15-1. USB device mode
Host Mode

In this mode the module works as the USB master having the entire control of the USB
bus. The Serial interface engine takes care of the timing and the frames. The software
stack takes care of the transfer management of the bus. The host also needs to provide the
5 v (VBUS) power line to supply the remote devices (in case its needed).

- > N
Host -

Figure 15-2. USB host mode

15.4 Voltage regulator operation modes

The voltage regulator is composed of two different regulators, the standby regulator and
the run regulator. You can select which regulator will be used by using the standby bit in
the system integration module. The input pin for the regulator is called VREGIN and the
output pin is VOUT33.

Run Mode

Kinetis Quick Reference User Guide, Rev. 2, 08/2012
132 Freescale Semiconductor, Inc.

4
Chapter 15 Universal Serial Bus OTG Module

The regulating loop of the RUN regulator and the STANDBY regulator are active, but
the switch connecting the STANDBY regulator output to the external pin is open.

Standby Mode

The regulating loop of the RUN regulator is disabled and the standby regulator is active.
The switch connecting the STANDBY regulator output to the external pin is closed.

Shutdown
The module is disabled.

,.{ STANDAY Reguiator l I
i
------------ v
Yo i | : !
Mo Ourpr Mpcuies ! E
S BTANDEY | hemeegeceanod
i | Regulates Outpul
Powar T regdd_in ragAa_out ! Voltage
Suoply E -.-_IJ RUN Regulater } | "E
I i ESR: S -> 100m Ohena
! Voliage Regulator !
Extarra| Capacnes

Chig i typical m 2 2uF

__

Figure 15-3. Voltage regulator block diagram

When the input power supply is below 3.6 V, the regulator goes to pass-through mode.
The following figure shows the ideal relati