
Three Award-Winning Compilers in One

Inside this Issue

Design Tip:
Give Your Project the

Boot!

2

Embedded Systems
Conference

2

Tech Tip:
Beware the Buffer

Overflow

3

Upgrade Now:
Latest Compiler

Versions

4

HI-TECH C
Powering On...

4

Coming Up...
initialization code for on board
peripherals.

A release candidate of HI-TECH C
f o r H o l t e k M C U i s c u r r e n t l y
undergoing verification ahead of the
final release of this new compiler in
early 2005. With support for the full
Holtek MCU family, this compiler
f e a t u r e s t h e l a t e s t i n c o d e
g e n e r a t i o n t e c h n o l o g y t h a t
st reaml ines programming, yet
delivers outstanding code density.
The compiler driver and debug
output integrates with Holtek's
d e v e l o p m e n t t o o l s m a k i n g
development a breeze.

For more information on these
upcoming compilers, contact one of
our sales offices or email us on
sales@htsoft.com

JANUARY 2005

HI-TECH Software’s PICC Enterprise Edition is the only
compiler package available with comprehensive support for all
10/12/14/16/17/18 series PICs and also the new dsPIC processors.
PICC Enterprise Edition is a low-cost package that unites our successful
PICC, PICC-18 and dsPICC compilers.

With the choice of over 300 different PIC processors, deciding which
one to use is a challenge. Even when you do decide, changing project
requirements during development often call for a larger or more
sophisticated chip. A change in processor can also mean buying a new
compiler… until now!

With HI-TECH Software’s PICC Enterprise Edition, there is finally a
single product that supports ALL of Microchip’s PICmicro processors.
Not only does this simplify which compiler to choose, it also eases
migration between processors by having a familiar tool-set.

PICC Enterprise Edition is particularly advantageous to existing PICC, PICC-18 and dsPICC customers
as the package is a cost-effective way of keeping all of your compilers up-to-date through a single
license option. Best of all, upgrades to the full PICC Enterprise Edition are at a special price!

With the strong relationship between HI-TECH Software and Microchip, you can be assured that the
PICC Enterprise Edition will be the first to support Microchip’s devices as they become available.

For further information or to download a demo, go to www.htsoft.com/products/eepiccompiler.php

News

HI-TIDE

HOLTEK

HI -TECH Software proudly
supports the Microchip brand with
high-quality C compilers. Beta 1 of the HI-TIDE v3.xx

series was released on November
2, 2004. This is available for PICC
compiler owners with extended
support and those who own the
PICC Enterprise Edition. As the first
in a series of releases to provide a
quality HI-TECH IDE (HI-TIDE) for
our compilers based on Eclipse,
Beta 1 is targeted at the PICC
c o m p i l e r a n d a l l o w s p r o j e c t
management, incremental builds,
colour coded edit ing and CVS
support.

Beta 2 is set to be released in the
New Year with a number of user
interface improvements and initial
implementation of the C Wiz code
w izard fo r P ICC. C Wiz i s a
development tool that provides

NEW!

With flash memory becoming more readily
available in microcontrollers, the possibility of
software updates in applications can now be more
easily realized. This article is a brief outline on
how to develop a bootloader for a Microchip PIC
processor (16F87x). The same procedure,
however, could be applied to many other types of
processors (8051, ARM, MSP430, etc.).

Before any coding starts, you should first think
about how things are going to be positioned in
program memory. Since the bootloader needs
control after reset, it will need to use the reset
vector. Since it would be nice to make it easy to
build bootloader compatible programs, it is best if
the bootloader is positioned entirely at the start of
memory, or, all at the end of memory. On mid-
range PICs, the regular interrupt vector is located
at address 0x4. If the bootloader was going to be
positioned entirely at the start of memory, it would
then have to redirect the interrupt vector to the
downloaded program. Since this would add
complexity to the code and latency to the vector,
the bootloader will be positioned at the end of
memory. The reset vector will still be needed, so
this will mean shifting the downloaded program's
reset vector elsewhere.

In Figure A, typically the reset vector contains
instructions to jump into the main program. As the
bootloader needs the reset vector, you must move
t he down loaded p rog ram 's rese t vec to r
elsewhere. Figure B shows how the reset vector
now points to the bootloader code and the
downloaded program's reset vector will be
posi t ioned to an address just before the
bootloader.

• On reset the bootloader will take control and
prompt the user to send a hex file. It will wait
here (with count down) for a configurable
number of seconds.

• If no hex file is sent, the bootloader will
assume that no update is required and it will
jump to the redirected reset vector which in
turn wil l run the previously downloaded
program. I f no program has ever been
downloaded, the redirected reset vector will
simply contain a jump to the beginning of the
bootloader and the whole process will start
again.

• If a HEX file is sent to the bootloader within the
count down period, it will start interpreting the
data and writing it to program memory. The
bootloader will look for addresses less than
0x4 (reset vector) and will instead write this
elsewhere. It will also ignore addresses
conflicting with those used by the bootloader,
thus protecting itself from being overwritten.

This bootloader is suitable for the following
processors: 16F870, 16F871, 16F873, 16F873A,
16F874, 16F874A, 16F876, 16F876A, 16F877,
16F877A. All source code, documentation and a
sample download program is included with the
latest version of the compiler. There is also further
information on HI-TECH Software’s online forums
at www.htsoft.com/support/forums.php

Design Tip: Give Your Project the Boot!

Page 2

The diagram above shows the memory map of a
program with and without the bootloader installed.

HI-TECH Software Booth Number: 411
350 leading companies showcasing cutting edge hardware,
software, tools, and the full spectrum of systems components.

Stop by HI-TECH’s booth in the exhibits area to learn more about
our industrial-strength software development tools and C compilers.

For more information on this event, go to www.esconline.com/sf

How it Works:

The phrase "buffer overflow" is almost making it into the mainstream press these days, but many
people who write programs which exhibit these mythical beasts are even unaware of what they are or why
they are a problem.

Tech Tip: Beware the Buffer Overflow

Page 3

Here's a buffer overflow. The constant array named greet actually
contains 6 characters, which strcpy() tries to copy into buffer where
there is only room for 5. What will probably happen is that the last
character (the invisible '\0' that terminates the string "hello") will be copied
into the space formerly known as precious, and the assumption that
precious contains the 7 we put into it will be violated.

#include <string.h>
main() {
 const char greet[] =
 "hello";
 char buffer[5];
 char precious = 7;

 strcpy(buffer,
 greet);
/* assume precious==7
*/
}

#include <string.h>
main() {
 const char greet[5] = "hello";
 char buffer[6];
 char precious = 7;

 strcpy(buffer, greet);
 memcpy(buffer, greet,
 sizeof buffer);
}

Now we've fixed the first problem by making buffer big enough
to hold all of greet, the strcpy() is then broken because greet
is smaller. "How?" you ask. By making greet into a char array
that is not a string, i.e. a char array that has no terminating '\0'.
The strcpy() now will not know where to stop, and will keep
copying until it finds a zero byte, if that ever happens.

The memcpy() is better, because it is guaranteed to stop, but it
still does (possibly unquantifiable) Bad Things, as it tries to copy
from one byte past the end of greet.

A word of warning: do not assume strncpy() will save you: it is, unfortunately, not simply a bounded
version of strcpy(), and has its own set of fangs. Most significantly, unlike all the other str...()
functions in the Standard Library, it will not necessarily give you back a NUL-terminated string even if
you give it one to work with. If its source is a long but valid string, and its destination is a shorter buffer, it
will fill the buffer with characters from the string but it will NOT terminate that buffer with a '\0'.

#include <stdio.h>
main() {
 char buffer[5];
 gets(buffer);
 fgets(buffer, sizeof
 buffer, stdin);
}

The line with gets() might not be a buffer overflow, if the user (or
wherever gets() is getting its input from) enters at most 4 characters
before a newline; gets() cannot tell that it is not allowed to write past
buffer[4]. The line with fgets() can never overflow its buffer. Note,
though, that fgets() does not eat the '\n' like gets() does.

There are many more possible ways to overflow a buffer, writing data in all sorts of places it was never
meant to go. Sometimes the effect might not be noticeable, but you can never be sure. And while the
humble string or character array is the most common target, buffer overflows are not type-bigots - they
will strike anything they can touch.

When hunting them, the first thing to look for is functions which write into arrays without any way of
knowing the amount of space available.

If you get to define the function, you can pass a length parameter in or ensure that every array you ever
pass to it is at least as big as the hard-coded maximum amount it will write.

If you are using a function someone else (say, the compiler vendor) has provided then avoiding
functions like gets(), which take some amount of data over which you have no control and stuff it into
arrays they can never know the size of, is a good start.

Make sure that functions like the str...() family which expect NUL-terminated strings actually get
them - store a '\0' in the last element of each array involved just before you call the function, if
necessary.

Good hunting

To Slay the Monster

A Spotter’s Guide

Upgrade Now: Latest Compiler Versions

Page 4

HI-TECH Software LLC 6600 Silacci Way Gilroy, CA 95020 USA HI-TECH Software PO Box 103, Alderley, QLD 4051, Australia Web: http://www.htsoft.com
Ph: 800 735 5715 Fax: 866 898 8329 Ph: +61 7 3552 7777 Fax: +61 7 3552 7778 Email: sales@htsoft.com

Compiler Version

68000 C Cross Compiler V7.21

68HC05 C Cross Compiler V7.80

68HC11 C Cross Compiler V7.80

8051 C Cross Compiler V9.01

ARClite C Cross Compiler V7.85PL1

dsPICC Compiler V9.50

H8/300(H) C Cross Compiler V7.80

HI-TECH C for ARM V9.12

Compiler Version

HI-TECH C for msp430 V9.01

HI-TECH C for XA V7.73PL1

PICC Compiler V8.05PL2

PICC Enterprise Edition V2005

PICC-18 Compiler V8.35PL2

Salvo for 8051/msp430/PICs V3.2.3

Z80/Z180 C Cross Compiler V7.80PL2

With a renowned reputation in the control industry, Foxboro
SCADA Australia sees its primary focus as developing world-class
Supervisory Control and Data Acquisitions (SCADA) systems. For over
15 years, Foxboro has been using HI-TECH C to design and develop
software for Remote Terminal Units (RTUs), which are installed into
numerous large power substations - including those of Powerlink
Queensland in Australia and Transpower in New Zealand.

Working under strict validation and verification regimes, HI-TECH C was
selected as the best software to address these requirements. “With high
quality, low-cost software and readily available access to expert technical
support - who else would we have chosen for the job,” states Colin
Weaver, Senior Software Engineer of Foxboro. “All the hardware
designers and embedded software engineers in the company have had

Foxboro’s Remote Terminal
Unit Development Team

This enduring and successful relationship between HI-TECH Software and Foxboro is set to continue for
many more years to come. As Foxboro looks into developing new generations of hardware, they are
adamant with maintaining their HI-TECH C compiler-based designs.

For more on what our customers say, go to www.htsoft.com/news/testimonials.php

For more information, go to www.htsoft.com/updates

HI-TECH C Powering On...

some form of contact with HI-TECH Software’s tools and are extremely pleased and comfortable with
using HI-TECH C compilers. We are particularly impressed with and heavily use the remote debugger
feature.”

 Check the Tech!

HI-TECH Software’s online forum is where over 3,000 members from around the world come to
discuss and get support with all issues related to our products. Go to www.htsoft.com/forum

