Is Now Part of ## ON Semiconductor® To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo September 2009 # MCT2M, MCT2EM, MCT210M, MCT271M Phototransistor Optocouplers #### **Features** - UL recognized (File # E90700, Vol. 2) - IEC60747-5-2 recognized (File # 102497) Add option V (e.g., MCT2VM) ### **Applications** - Power supply regulators - Digital logic inputs - Microprocessor inputs ## **Description** The MCT2XXM series optoisolators consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor in a 6-pin dual in-line package. #### **Schematic** ## **Package Outlines** ## **Absolute Maximum Ratings** Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. | Symbol | Parameter | Value | Units | | |---------------------|--|----------------|-------|--| | TOTAL DEVI | DE . | | | | | T _{STG} | Storage Temperature -40 to +150 | | °C | | | T _{OPR} | Operating Temperature | -40 to +100 | °C | | | T _{SOL} | Lead Solder Temperature | 260 for 10 sec | °C | | | P _D | Total Device Power Dissipation @ T _A = 25°C | 250 | mW | | | | Derate above 25°C | 2.94 | mW/°C | | | EMITTER | | | • | | | I _F | DC/Average Forward Input Current | 60 | mA | | | V _R | Reverse Input Voltage | 3 | V | | | I _F (pk) | Forward Current – Peak (300µs, 2% Duty Cycle) | 3 | А | | | P _D | LED Power Dissipation @ T _A = 25°C | 120 | mW | | | | Derate above 25°C | 1.41 | mW/°C | | | DETECTOR | | | | | | I _C | Collector Current | 50 | mA | | | V _{CEO} | Collector-Emitter Voltage | 30 | V | | | P _D | Detector Power Dissipation @ T _A = 25°C | 150 | mW | | | | Derate above 25°C | 1.76 | mW/°C | | ## **Electrical Characteristics** (T_A = 25°C unless otherwise specified) ## **Individual Component Characteristics** | Symbol | Parameter | Test Conditions | Device | Min. | Тур.* | Max. | Units | |-------------------|--|---|----------------------------|------|-------|------|-------| | EMITTER | | | | | | | | | V _F | Input Forward Voltage | I _F = 20mA | MCT2M
MCT2EM
MCT271M | | 1.25 | 1.50 | V | | | | $T_A = 0^{\circ}C - 70^{\circ}C$, $I_F = 40mA$ | MCT210M | | 1.33 | | | | I _R | Reverse Leakage
Current | V _R = 3.0V | MCT2M
MCT2EM
MCT271M | | 0.001 | 10 | μA | | | | $T_A = 0$ °C -70 °C, $V_R = 6.0$ V | MCT210M | | | | | | DETECTO | DR | | | | | | | | BV _{CEO} | Collector-Emitter
Breakdown Voltage | I _C = 1.0mA, I _F = 0 | ALL | 30 | 100 | | V | | | | T _A = 0°C–70°C | MCT210M | | | | | | CBC | Collector-Base
Breakdown Voltage | $I_C = 10\mu A, I_F = 0$ | MCT2M
MCT2EM
MCT271M | 70 | 120 | | V | | | | T _A = 0°C-70°C | MCT210M | 30 | | | | | BV _{ECO} | Emitter-Collector
Breakdown Voltage | I _E = 100μA, I _F = 0 | MCT2M
MCT2EM
MCT271M | 7 | 10 | | V | | | | T _A = 0°C–70°C | MCT210M | 6 | 10 | | | | I _{CEO} | Collector-Emitter Dark
Current | V _{CE} = 10V, I _F = 0 | ALL | | 1 | 50 | nA | | | | $V_{CE} = 5V, T_A = 0^{\circ}C - 70^{\circ}C$ | | | | 30 | μΑ | | I _{CBO} | Collector-Base Dark
Current | V _{CB} = 10V, I _F = 0 | ALL | | | 20 | nA | | C _{CE} | Capacitance | $V_{CE} = 0V, f = 1MHz$ | ALL | | 8 | | pF | ^{*}All typical $T_A = 25^{\circ}C$ #### **Isolation Characteristics** | Symbol | Parameter | Test Conditions | Min | Тур* | Max | Units | |------------------|--------------------------------|----------------------------|------------------|------|-----|---------| | V _{ISO} | Input-Output Isolation Voltage | f = 60Hz, t = 1 sec. | 7500 | | | Vac(pk) | | R _{ISO} | Isolation Resistance | V _{I-O} = 500 VDC | 10 ¹¹ | | / | Ω | | C _{ISO} | Isolation Capacitance | | | 0.2 | 2 | pF | ^{*}All typicals at $T_A = 25^{\circ}C$ ## **Electrical Characteristics** (Continued) (T_A = 25°C unless otherwise specified) #### **Transfer Characteristics** | Symbol | Parameter | Test Conditions | Device | Min. | Тур.* | Max. | Unit | |----------------------|--|--|----------------------------|------|-------|------|------| | DC CHARA | ACTERISTICS | | | | | | | | CTR | Output Collector | $T_A = 0$ °C -70 °C | MCT210M | 150 | | | % | | | Current | I _F = 10mA, V _{CE} = 10V | MCT2M
MCT2EM | 20 | | | | | | | | MCT271M | 45 | | 90 | 1 | | | | $I_F = 3.2 \text{mA} \text{ to } 32 \text{mA},$
$V_{CE} = 0.4 \text{V}, T_A = 0^{\circ} \text{C} - 70^{\circ} \text{C}$ | MCT210M | 50 | | | | | V _{CE(SAT)} | Collector-Emitter
Saturation Voltage | I _C = 2mA, I _F = 16mA | MCT2M
MCT2EM
MCT271M | | | 0.4 | V | | | | I _C = 16mA, I _F = 32mA,
T _A = 0°C–70°C | MCT210M | | | | | | AC CHARA | ACTERISTICS | | | , | | | | | t _{on} | AC Characteristic Saturated
Turn-on Time from 5V to 0.8V | $I_F = 15\text{mA}, V_{CC} = 5\text{V},$
$R_L = 2\text{k}\Omega, R_B = \text{Open (Fig. 11)}$ | MCT2M
MCT2EM | | 1.1 | | μs | | | | $I_F = 20$ mA, $V_{CC} = 5$ V,
$R_L = 2$ kΩ, $R_B = 100$ kΩ) (Fig. 11) | MCT2M
MCT2EM | | 1.3 | | | | t _{off} | Saturated Turn-off Time from SAT to 2.0 V | I_F = 15mA, V_{CC} = 5V,
R_L = 2kΩ, R_B = Open (Fig. 11) | MCT2M
MCT2EM | | 50 | | μs | | | | $I_F = 20$ mA, $V_{CC} = 5$ V,
$R_L = 2$ k Ω , $R_B = 100$ k Ω (Fig. 11) | MCT2M
MCT2EM | | 20 | | | | t _{on} | Turn-on Time | $I_F = 10 \text{mA}, V_{CC} = 10 \text{V},$
$R_L = 100 \Omega$ | MCT2M
MCT2EM | | 2 | | μs | | t _{off} | Turn-off Time | $I_F = 10 \text{mA}, V_{CC} = 10 \text{V},$
$R_L = 100 \Omega$ | MCT2M
MCT2EM | | 2 | | μs | | t _r | Rise Time | $I_F = 10 \text{mA}, V_{CC} = 10 \text{V},$
$R_L = 100 \Omega$ | MCT2M
MCT2EM | | 2 | | μs | | t _f | Fall Time | $I_F = 10 \text{mA}, V_{CC} = 10 \text{V},$
$R_L = 100 \Omega$ | MCT2M
MCT2EM | | 1.5 | | μs | | t _{on} | Saturated turn-on time | $I_F = 16\text{mA}, R_L = 1.9\text{k}\Omega,$ | MCT271M | | 1.0 | | μs | | t _{off} | Saturated turn-off time
(Approximates a typical
TTL interface) | V _{CC} = 5V (Fig. 11) | | | 48 | | μs | | t _{on} | Saturated turn-on time | $I_F = 16\text{mA}, R_L = 4.7\text{k}\Omega,$ | MCT271M | | 1.0 | | μs | | t _{off} | Saturated turn-off time
(Approximates a typical
low power TTL interface) | V _{CC} = 5 V (Fig. 20) | | | 98 | | μs | | t _r | Saturated rise time | $I_F = 16 \text{mA}, R_L = 560 \Omega,$ | MCT210M | | 1.0 | | μs | | t _f | Saturated fall time | V _{CC} = 5V) (Fig. 11, 12) | | | 11 | // [| μs | | T _{PD (HL)} | Saturated propagation delay – HIGH to LOW | I_F = 16mA, R_L = 2.7kΩ (Fig. 11, 12) | MCT210M | | 1.0 | | μs | | T _{PD (LH)} | Saturated propagation delay – LOW to HIGH | | | | 50 | | μs | | t _r | Non-saturated rise time | I _C = 2mA, V _{CC} = 5V, | MCT210M | | 2 | | μs | | t _f | Non-saturated fall time | $R_L = 100\Omega \text{ (Fig. 11)}$ | | | 2 | | μs | | t _{on} | Non-saturated turn-on time | I _C = 2mA, V _{CC} = 5V, | MCT271M | | 2 | 7 | μs | | t _{off} | Non-saturated turn-off time | $R_{L} = 100\Omega \text{ (Fig. 20)}$ | | | 2 | 7 | μs | ^{*}All typicals at $T_A = 25^{\circ}C$ ## **Safety and Insulation Ratings** As per IEC 60747-5-2, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits. | Symbol | Parameter | Min. | Тур. | Max. | Unit | |-------------------|---|-----------------|-----------|------|-------------------| | | Installation Classifications per DIN VDE 0110/1.89 Table 1 | | | | | | | For Rated Main Voltage < 150Vrms | | I-IV | | | | | For Rated Main voltage < 300Vrms | | I-IV | | | | | Climatic Classification | | 55/100/21 | | | | | Pollution Degree (DIN VDE 0110/1.89) | | 2 | | | | CTI | Comparative Tracking Index | 175 | | | | | V _{PR} | Input to Output Test Voltage, Method b, V _{IORM} x 1.875 = V _{PR} , 100% Production Test with tm = 1 sec, Partial Discharge < 5pC | 1594 | | | V _{peak} | | | Input to Output Test Voltage, Method a, V _{IORM} x 1.5 = V _{PR} , Type and Sample Test with tm = 60 sec, Partial Discharge < 5pC | 1275 | | | V _{peak} | | V _{IORM} | Max. Working Insulation Voltage | 850 | | | V _{peak} | | V_{IOTM} | Highest Allowable Over Voltage | 6000 | | | V _{peak} | | | External Creepage | 7 | | | mm | | | External Clearance | 7 | | | mm | | | Insulation Thickness | 0.5 | | | mm | | RIO | Insulation Resistance at Ts, V _{IO} = 500V | 10 ⁹ | | | Ω | ## **Typical Performance Curves** Fig. 1 LED Forward Voltage vs. Forward Current Fig. 2 Normalized CTR vs. Forward Current Fig. 3 Normalized CTR vs. Ambient Temperature Fig. 4 CTR vs. RBE (Unsaturated) Fig. 5 CTR vs. RBE (Saturated) Fig. 6 Collector-Emitter Saturation Voltage vs Collector Current ## **Typical Performance Curves (Continued)** ## **Typical Electro-Optical Characteristics** #### **TEST CIRCUIT** #### WAVE FORMS Figure 11. Switching Time Test Circuit and Waveforms Figure 12. Switching Time Waveforms (MCT210M) ## **Ordering Information** | Option | Order Entry Identifier (Example) | Description | |-----------|----------------------------------|---| | No suffix | MCT2M | Standard Through Hole Device (50 units per tube) | | S | MCT2SM | Surface Mount Lead Bend | | SR2 | MCT2SR2M | Surface Mount; Tape and Reel (1,000 units per reel) | | Т | MCT2TM | 0.4" Lead Spacing | | V | MCT2VM | IEC60747-5-2 | | TV | MCT2TVM | IEC60747-5-2, 0.4" Lead Spacing | | SV | MCT2SVM | IEC60747-5-2, Surface Mount | | SR2V | MCT2SR2VM | IEC60747-5-2, Surface Mount, Tape and Reel (1,000 units per reel) | ## **Marking Information** | Definitions | | | | | |-------------|--|--|--|--| | 1 | Fairchild logo | | | | | 2 | Device number | | | | | 3 | VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table) | | | | | 4 | One digit year code, e.g., '7' | | | | | 5 | Two digit work week ranging from '01' to '53' | | | | | 6 | Assembly package code | | | | *Note – Parts that do not have the 'V' option (see definition 3 above) that are marked with date code '325' or earlier are marked in portrait format. ## **Carrier Tape Specification** User Direction of Feed ---- #### **Reflow Profile** #### NOTES: - A) NO STANDARD APPLIES TO THIS PACKAGE. - B) ALL DIMENSIONS ARE IN MILLIMETERS. - C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION - D) DRAWING FILENAME AND REVSION: MKT-N06BREV4. LAND PATTERN RECOMMENDATION NOTES: - A) NO STANDARD APPLIES TO THIS PACKAGE. - B) ALL DIMENSIONS ARE IN MILLIMETERS. - C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION - D) DRAWING FILENAME AND REVSION: MKT-N06CREV4. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative