SYSMAC CV-series
CV500/CVv1000/CV2000/CVM1
Programmable Controllers

Operation Manual: Ladder Diagrams

Revised August 1998

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

&DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

&WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

&Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

[J OMRON, 1992

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

Vi

TABLE OF CONTENTS
PRECAUTIONS e Xiii

lintended AUIENCE.ttt Xiv
2General PreCautionsttt Xiv
3Safety Precautions. Xiv
4 Operating Environment Precautions. XV
5 Application PreCautions. it XV

SECTION 1

Introduction 1
1-1 0 OVRIVIEW .« ettt it et e e e e e e e e e e 2
1-2 Relay Circuits: The Roots of PC LOGICttt e 3
1-3 PC Terminology.o oottt 3
1-4 OMRON Product Terminology. oottt e 4
1-5 Overview of PC Operation. e 4
1-6 PC Operating MOOESot e 6
1-7 Peripheral DeviCes. 7
1-8 CV-series Manualso 8
1-9 C-series—CV-series System Compatibility. o L. 9
1-10 Networks and Remote 1/O SyStems.t 10
1-11 New CPUs and Related UnNits. e 15
1-12 CPU COMPANISON . . . o vttt et e et e e e e e e e e e e e e e e 16
1-13 Improved Specifications 16

SECTION 2

Hardware Considerations 21
2-1 CPU COomPONENES. . . ittt e e e e e e e 22
2-2 Program MemOrYot 24
2-3 MemOory Cards.o 25
2-4 Data Memory and Expansion Data Memory Unit 28
2-5 1/O Control Unit and 1/O Interface Unit Displays 29
2-6 Peripheral DeviCes. o e 31
2-7 PC Configuration. 31

SECTION 3

Memory Areas 33
-1 INtrOdUCHION . . . oo e e 35
3-2 Data Area SITUCIUIEt e e 36
3-3 ClO (Core l/O) Area. . . oo e 40
3-4 TR (Temporary Relay) Area. e 48
3-5 CPUBUS LINK Areao 49
3-6 Auxiliary Area 50
3-7 TranSition ATCao ittt 66
3-8 SHEP ArCA. . . o 67
3-9 TIMEI ANBa. . . ottt 67
3-10 COUNIEE ArBa. . . et e e e 68
3-11 DM and EM Ar€aS oottt it 68
3-12 Index and Data Registers (IRand DR). e 70

vii

viii

TABLE OF CONTENTS

SECTION 4

Writing Programs 73
4-1 BasSiC Procedure 74
4-2 Instruction Terminologyt 74
4-3 Basic Ladder Diagrams.ttt 75
4-4 MNemoniC COOE 80
4-5 Branching InStruction LiNes. e 87
4-B JUMIPS . o o it e e e e e e e 92
4-7 Controlling Bit Status.o 93
4-8 Intermediate INStrUCLIONS. e 96
4-9 Work Bits (Internal Relays) 96
4-10 Programming Precautions.ttt e 98
4-11 Program EXECULION.ot 99
4-12 Using Version-2 CVML CPUS. e e 99
4-13 Data FOrmMats. e 104

SECTION 5

Instruction Set 109
5-1 0 NOtatioN . ..o e 114
5-2 Instruction FOrmat. 114
5-3 Data Areas, Definers, and Flags 114
5-4 Differentiated and Immediate Refresh Instructions. 117
5-5 Coding Right-hand InStructions e 119
5-6 Ladder Diagram INStrUCLIONS. oo e 121
5-7 Bit Control INStrUCLIONS. 126
5-8 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003). 134
5-9 JUMP and JUMP END: JMP(004) and JME(0D5)ot e 136
5-10 CONDITIONAL JUMP: CIP(221)/CIPN(222) oottt e e e 138
5-11 END: END(OOL). . . . oottt e et e e e e e e e e e e 139
5-12 NO OPERATION: NOP(000). . . .« vttt et e e e e e e e e e e e e 139
5-13 Timer and Counter INStrUCLIONS e 139
5-14 Shift INSrUCHIONS. 159
5-15 Data Movement INStrUCtiONS.o e 187
5-16 Comparison INStrUCLIONS e e 205
5-17 Conversion INStrUCHIONS.t e 219
5-18 BCD Calculation INStructions e 249
5-19 Binary Calculation INStructions. e 261
5-20 Symbol Math InStructions 272
5-21 Floating-point Math Instructions. e 293
5-22 Increment/Decrement INStrUCtiONS.o 314
5-23 Special Math INStruCtions 319
5-24 PID and Related INStructions e 330
5-25 LOgIiC INSIIUCLIONS 341
5-26 Time INSIIUCLIONS. e 349
5-27 Special INStrUCtiONSot 354
5-28 Flag/Register INStruCtions. 366
5-29 STEP DEFINE and STEP START: STEP(008)/SNXT(009)., 368
5-30 SUDIOULINES 377
5-31 Interrupt CoNntrolo e 382
5-32 Stack INStrUCLiONS. 389
5-33 Data TraCing . . .« oottt ettt e e 393
5-34 Memory Card INStructions.o e 396
5-35 Special I/O INStrUCLIONS 404
5-36 Network INStrUCiONS. 413
5-37 SFC Control INStruCtioNS. 427
5-38 Block Programming INStructions. 438

TABLE OF CONTENTS

SECTION 6

Program Execution Timing 451
B6-1 PC Operation. 452
B-2 CycCle TimMe. . ..o 464
6-3 Calculating Cycle Time e 470
6-4 Instruction EXecution TIMeSt 472
6-5 /O RespoNse TiMe. . .. oo e 486

SECTION 7

PC Setup. ... 495
7-1 PC Setup OVEIVIEW . . . vt e ettt e et e e e e e e e e e e e 496
7-2 PC Setup Detalls.o 497
7-3 PC Setup Default Settings.o 501

SECTION 8

Error Processing 503
8-1 Alarm INdiCatorst 504
8-2 Programmed Alarms and Error MeSSagesS. vt v vttt e 504
8-3 Reading and Clearing Errors and Messages.ot 504
8-4 EITOr MESSaAgesS. . . . oottt 504
8-5 ErOr Flags. oo 509

Appendices
A INSTIUCHION St oo 511
B Error and Arithmetic Flag Operation e 569
C PC Setup Default Settings.o oo e 575
D Data ArCas.ttt e 577
E /O Assignment Sheets 583
F Program Coding Sheet 589
G Data Conversion Table. 593
H Extended ASCIL 595

Glossary 597

Index 619

Revision History 629

About this Manual:

This manual describes ladder diagram programming and memory allocation in the SYSMAC CV-series Program-
mable Controllers (PCs) (CV500, CV1000, CV2000, and CVM1). This manual is designed to be used together with
two other CV-series PC operation manuals and an installation guide. The entire set of CV-series PC manuals is listed
below. Only the basic portions of the catalog humbers are given; be sure you have the most recent version for your

area.
Manual Cat. No.
CV-series PC Installation Guide W195
CV-series PC Operation Manual: SFC W194
CV-series PC Operation Manual: Ladder Diagrams W202
CV-series PC Operation Manual: Host Interface W205

Programming and operating CV-series PCs are performed with the CV Support Software (CVSS), the SYSMAC Sup-
port Software (SSS), and the CV-series Programming Console for which the following manuals are available.

Product Manuals
CVSS The CV Series Getting Started Guidebook (W203) and the CV Support Software Opera-
tion Manuals: Basics (W196), Offline (W201), and Online (W200).
SSS SYSMAC Support Software Operation Manuals: Basics (W247), C-series PC Opera-
tions (W248), and CVML1 Operations (W249)
CV-series Programming Console | CVM1-PRS21-E Programming Console Operation Manual (W222)

Note The CVSS does not support new instructions added for version-2 CVM1 PCs. The SSS does not support SFC
programming (CV500, CV1000, or CV2000).

Please read this manual completely together with the other CV-series manuals and be sure you understand the infor-
mation provide before attempting to install, program, or operate a CV-series PC. The basic content of each section of
this manual is outlined below.

Section 1 gives a brief overview of the history of Programmable Controllers and explains terms commonly used in
ladder-diagram programming. It also provides an overview of the process of programming and operating a PC. A list
of the manuals available to use with this manual is also provided.

Section 2 provides information on hardware aspects of the CV-series PCs relevant to programming and software
operation. This information is covered in more detail in the CV-series PC Installation Guide.

Section 3 describes the way in which PC memory is broken into various areas for different purposes. The contents of
each area and addressing conventions are also described.

Section 4 explains the basic steps and concepts involved in writing a basic ladder diagram program. The entire set
of instructions used in programming is described in Section 5 Instruction Set.

Section 5 explains each instruction in the CV-series PC instruction sets and provides the ladder diagram symbols,
data areas, and flags used with each. The instructions provided by the CV-series PCs are described in following sub-
sections by instruction group.

Section 6 explains the execution cycle of the PC and shows how to calculate the cycle time and I/O response times.
1/0 response times in Link Systems are described in the individual System Manuals. These manuals are listed at the
end of Section 1 Introduction.

Section 7 provides tables that list the parameters in the PC Setup, provide examples of normal application, and
provides the default values. The use of each parameter in the PC Setup is described where relevant in this manual
and in other CV-series manuals.

Section 8 provides information on hardware and software errors that may occur during PC operation. Although de-
scribed mainly in Section 3 Memory Areas, flags and other error information provided in the Auxiliary Area are listed in
8-5 Error Flags.

Various appendices are also provided for convenience (see table of contents for a list).

&WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

Xi

PRECAUTIONS

This section provides general precautions for using the Programmable Controller (PC) and related devices.

The information contained in this section is important for the safe and reliable application of the Bgrammable Con-
troller. You must read this section and understand the information contained before attempting to set up or operate a
PC system.

lintended AUdIENCE. oot e Xiv
2General PreCautions. ot tee Xiv

3 Safety Precautions. Xiv

4 Operating Environment Precautions i e XV
5 Application Precautions. XV

Xiii

Safety Precautions

1

2

3

Xiv

Intended Audience

This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

» Personnel in charge of installing FA systems.
» Personnel in charge of designing FA systems.
» Personnel in charge of managing FA systems and facilities.

General Precautions

/\\ WARNING

The user must operate the product according to the performance specifications
described in the operation manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement ma-
chines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this manual
close at hand for reference during operation.

It is extremely important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the above-mentioned
applications.

Safety Precautions

/\\ WARNING
/\\ WARNING
/\ WARNING

/\\ WARNING

&Caution
&Caution

&Caution

Do not attempt to take any Unit apart while the power is being supplied. Doing so
may result in electric shock.

Do not touch any of the terminals while the power is being supplied. Doing so
may result in electric shock.

Do not attempt to disassemble, repair. or modify any Units. Any attempt to do so
may result in malfunction, fire, or electric shock.

There is a lithium battery built into the SRAM Memory Cards. Do not short the
positive and negative terminals of the battery, charge the battery, attempt to take
it apart, subject it to pressures that would deform it, incinerate it, or otherwise
mistreat it. Doing any of these could cause the battery to erupt, ignite, or leak.

Execute online edit only after confirming that no adverse effects will be caused
by extending the cycle time. Otherwise, the input signals may not be readable.

Confirm safety at the destination node before transferring a program to another
node or changing the 1/0O memory area. Doing either of these without confirming
safety may result in injury.

Tighten the screws on the terminal block of the AC Power Supply Unit to the
torque specified in the operation manual. The loose screws may result in burning
or malfunction.

Application Precautions

4 Operating Environment Precautions

&Caution

&Caution

&Caution

Do not operate the control system in the following places:

* Locations subject to direct sunlight.

* Locations subject to temperatures or humidity outside the range specified in
the specifications.

* Locations subject to condensation as the result of severe changes in tempera-
ture.

* Locations subject to corrosive or flammable gases.

* Locations subject to dust (especially iron dust) or salts.

* Locations subject to exposure to water, oil, or chemicals.
* Locations subject to shock or vibration.

Take appropriate and sufficient countermeasures when installing systems in the
following locations:

* Locations subject to static electricity or other forms of noise.
* Locations subject to strong electromagnetic fields.

« Locations subject to possible exposure to radioactivity.

* Locations close to power supplies.

The operating environment of the PC System can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC System. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions

Observe the following precautions when using the PC System.

&WARNING Always heed these precautions. Failure to abide by the following precautions

&Caution

could lead to serious or possibly fatal injury.

 Always connect to a class-3 ground (to 100 Q or less) when installing the Units.
Not connecting to a class-3 ground may result in electric shock.

« Always turn off the power supply to the PC before attempting any of the follow-
ing. Not turning off the power supply may result in malfunction or electric
shock.

» Mounting or dismounting I/O Units, CPU Units, Memory Cassettes, or any
other Units.

» Assembling the Units.

» Setting DIP switches or rotary switches.

» Connecting or wiring the cables.

» Connecting or disconnecting the connectors.

Failure to abide by the following precautions could lead to faulty operation of the
PC or the system, or could damage the PC or PC Units. Always heed these pre-
cautions.

* Fail-safe measures must be taken by the customer to ensure safety in the

event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes.

XV

Application Precautions

5

XVi

Interlock circuits, limit circuits, and similar safety measures in external circuits
(i.e., not in the Programmable Controller) must be provided by the customer.

Always use the power supply voltage specified in the operation manuals. An
incorrect voltage may result in malfunction or burning.

Take appropriate measures to ensure that the specified power with the rated
voltage and frequency is supplied. Be particularly careful in places where the
power supply is unstable. An incorrect power supply may result in malfunction.

Install external breakers and take other safety measures against short-circuit-
ing in external wiring. Insufficient safety measures against short-circuiting may
result in burning.

Do not apply voltages to the Input Units in excess of the rated input voltage.
Excess voltages may result in burning.

Do not apply voltages or connect loads to the Output Units in excess of the
maximum switching capacity. Excess voltage or loads may result in burning.

Disconnect the functional ground terminal when performing withstand voltage
tests. Not disconnecting the functional ground terminal may result in burning.

Install the Unit properly as specified in the operation manual. Improper installa-
tion of the Unit may result in malfunction.

Be sure that all the mounting screws, terminal screws, and cable connector
screws are tightened to the torque specified in the relevant manuals. Incorrect
tightening torque may result in malfunction.

Leave the label attached to the Unit when wiring. Removing the label may re-
sult in malfunction.

Remove the label after the completion of wiring to ensure proper heat dissipa-
tion. Leaving the label attached may result in malfunction.

Use crimp terminals for wiring. Do not connect bare stranded wires directly to
terminals. Connection of bare stranded wires may result in burning.

Double-check all the wiring before turning on the power supply. Incorrect wir-
ing may result in burning.

Mount the Unit only after checking the terminal block completely.

Be sure that the terminal blocks, Memory Units, expansion cables, and other
items with locking devices are properly locked into place. Improper locking
may result in malfunction.

Check the user program for proper execution before actually running it on the
Unit. Not checking the program may result in an unexpected operation.

Confirm that no adverse effect will occur in the system before attempting any of
the following. Not doing so may result in an unexpected operation.

» Changing the operating mode of the PC.
* Force-setting/force-resetting any bit in memory.
» Changing the present value of any word or any set value in memory.

Resume operation only after transferring to the new CPU Unit the contents of
the DM and HR Areas required for resuming operation. Not doing so may result
in an unexpected operation.

Do not pull on the cables or bend the cables beyond their natural limit. Doing
either of these may break the cables.

Do not place objects on top of the cables. Doing so may break the cables.

» When replacing parts, be sure to confirm that the rating of a new part is correct.

Not doing so may result in malfunction or burning.

Before touching the Unit, be sure to first touch a grounded metallic object in
order to discharge any static built-up. Not doing so may result in malfunction or
damage.

SECTION 1
Introduction

This section gives a brief overview of the history of Programmable Controllers and explains terms commonly used in
ladder-diagram programming. It also provides an overview of the process of programming and operating a PC and ex-
plains basic terminology used with OMRON PCs. A list of the manuals available to use with this manual for special PC
applications and products is also provided.

1-10
1-11
1-12
1-13

OVEBIVIBW . . o ottt e e e e e 2
Relay Circuits: The Roots of PC LOQIC.« ottt 3
PC Terminology.o o e 3
OMRON Product Terminology.ttt e e e 4
Overview of PC Operation.o e e e 4
PC Operating Modes e 6
Peripheral DeVICESo e 7
CV-series Manuals . ..o 8
C-series—CV-series System Compatibility. 9
Networks and Remote I/O Systems. e 10
New CPUs and Related UnNitsS. e e 15
CPU COompPariSONottt e e e e e e 16
Improved Specifications. e 16
1-13-1 Upgraded Specifications. 16
1-13-2 Version-1 CPUS . ..o 17
1-13-3 Version-2 CVML CPUS e 18
1-13-4 Upgraded Specifications.o e 19

Overview

Section 1-1

1-1 Overview

A PC (Programmable Controller) is basically a CPU (Central Processing Unit)
containing a program and connected to input and output (I/O) devices. The pro-
gram controls the PC so that when an input signal from an input device turns ON
or OFF, the appropriate response is made. The response normally involves turn-
ing ON or OFF an output signal to some sort of output device. The input devices
could be photoelectric sensors, pushbuttons on control panels, limit switches, or
any other device that can produce a signal that can be input into the PC. The
output devices could be solenoids, indicator lamps, relays turning on motors, or
any other devices that can be activated by signals output from the PC.

For example, a sensor detecting a passing product turns ON an input to the PC.
The PC responds by turning ON an output that activates a pusher that pushes
the product onto another conveyor for further processing. Another sensor, posi-
tioned higher than the first, turns ON a different input to indicate that the product
is too tall. The PC responds by turning on another pusher positioned before the
pusher mentioned above to push the too-tall product into a rejection box.

Although this example involves only two inputs and two outputs, it is typical of the
type of control operation that PCs can achieve. Actually even this example is
much more complex than it may at first appear because of the timing that would
be required, i.e., “How does the PC know when to activate each pusher?” Much
more complicated operations are also possible.

To achieve proper control, CV-series PCs use a form of PC logic called ladder-
diagram programming. A single ladder-diagram program can be used, as in C-
series PCs, but CV-series PCs are also support sequential function chart, or
SFC, programming. SFC programming breaks the program into sections based
on processes, greatly reducing program development and maintenance times,
and allowing program sections to be easily used in other programs. The follow-
ing diagram shows a simple SFC program, which consists of steps connected by
lines representing the flow of execution.

ST0000 Initial step

—r— TNO000 Transition

ST0001 02 Step

—— 000100 —— 000200
STO0011 m ST0012
—— 000101 —— 000201

ST0020

I

—— 000300

——*= STO0000

The transitions between the steps control when execution moves between the
steps and actions contained within the steps specify the actual executable ele-
ments of the program. Programming the actions and transitions within SFC pro-
gramming are generally achieved using ladder diagrams. There are also some
ladder diagram instructions that can be used to control the SFC program.

This manual is written to explain ladder-diagram programming and to prepare
the reader to program and operate the CV-series PCs. SFC programming is ex-
plained in the CV-series PCs Operation Manual: SFC.

PC Terminology

Section 1-3

1-2 Relay Circuits: The Roots of PC Logic

Relay vs. PC Terminology

PCs historically originate in relay-based control systems. And although the inte-
grated circuits and internal logic of the PC have taken the place of the discrete
relays, timers, counters, and other such devices, actual PC operation proceeds
as if those discrete devices were still in place. PC control, however, also pro-
vides computer capabilities and accuracy to achieve a great deal more flexibility
and reliability than is possible with relays.

The symbols and other control concepts used to describe PC operation also
come from relay-based control and form the basis of the ladder-diagram pro-
gramming method. Most of the terms used to describe these symbols and con-
cepts, however, have come in from computer terminology.

The terminology used throughout this manual is somewhat different from relay
terminology, but the concepts are the same.

The following table shows the relationship between relay terms and the PC
terms used for OMRON PCs.

Relay term PC equivalent
contact input or condition
coll output or work bit
NO relay normally open condition
NC relay normally closed condition

Actually there is not a total equivalence between these terms. The term condi-
tion is only used to describe ladder diagram programs in general and is specifi-
cally equivalent to one of a certain set of basic instructions. The terms input and
output are not used in programming per se, except in reference to 1/O bits that
are assigned to input and output signals coming into and leaving the PC. Nor-
mally open conditions and normally closed conditions are explained in 4-3 Basic
Ladder Diagrams.

1-3 PC Terminology

PC

Inputs and Outputs

Although also provided in the Glossary at the back of this manual, the following
terms are crucial to understanding PC operation and are thus introduced here.

Because CV-series PCs are Rack PCs, there is no single product that is a CV-
series PC. That is why we talk about the configuration of the PC, because a PC is
a configuration of smaller Units.

To have a functional PC, you would need to have a CPU Rack with at least one
Unit mounted to it that provides I/O points. When we refer to the PC, however, we
are generally talking about the CPU and all of the Units directly controlled by it
through the program. This does not include the I/O devices connected to PC in-
puts and outputs. The term PC is also used to refer to the controlling element of
the PC, i.e., the CPU.

If you are not familiar with the terms used above to describe a PC, refer to Sec-
tion 2 Hardware Considerations for explanations.

A device connected to the PC that sends a signal to the PC is called an input
device; the signal it sends is called an input signal. A signal enters the PC
through terminals or through pins on a connector on a Unit. The place where a
signal enters the PC is called an input point. This input point is allocated a loca-
tion in memory that reflects its status, i.e., either ON or OFF. This memory loca-
tion is called an input bit. The CPU, in its normal processing cycle, monitors the
status of all input points and turns ON or OFF corresponding input bits accord-
ingly.

There are also output bits in memory that are allocated to output points on Units
through which output signals are sent to output devices, i.e., an output bit is

3

Overview of PC Operation

Section 1-5

Controlled System and
Control System

turned ON to send a signal to an output device through an output point. The CPU
periodically turns output points ON or OFF according to the status of the output
bits.

These terms are used when describing different aspects of PC operation. When
programming, one is concerned with what information is held in memory, and so
I/O bits are referred to. When talking about the Units that connect the PC to the
controlled system and the places on these Units where signals enter and leave
the PC, I/O points are referred to. When wiring these 1/O points, the physical
counterparts of the 1/0 points, either terminals or connector pins, are referred to.
When talking about the signals that enter or leave the PC, one refers to input
signals and output signals, or sometimes just inputs and outputs. It all depends
on what aspect of PC operation is being talked about.

The Control System includes the PC and all I/O devices it uses to control an ex-
ternal system. A sensor that provides information to achieve control is an input
device that is clearly part of the Control System. The controlled system is the
external system that is being controlled by the PC program through these 1/10
devices. I/0O devices can sometimes be considered part of the controlled sys-
tem, e.g., a motor used to drive a conveyor belt.

1-4 OMRON Product Terminology

OMRON products are divided into several functional groups that have generic
names. Appendix A Standard Models lists products according to these groups.
The term Unit is used to refer to all of the OMRON PC products. Although a Unit
is any one of the building blocks that goes together to form a CV-series PC, its
meaning is generally, but not always, limited in context to refer to the Units that
are mounted to a Rack. Most, but not all, of these products have names that end
with the word Unit.

The largest group of OMRON products is the I/O Units . These include all of the
Rack-mounting Units that provide non-dedicated input or output points for gen-
eral use. I/O Units come with a variety of point connections and specifications.
Special 1/0 Units are dedicated Units that are designed to meet specific needs.
These include Position Control Units, High-speed Counter Units, and Analog 1/O
Units. This group also includes some programmable Units, such as the ASCII
Unit, which is programmed in BASIC.

CPU Bus Units connect to the CPU bus and must be mounted on either the
CPU Rack or a Expansion CPU Rack. These include the SYSMAC NET Link
Unit, SYSMAC LINK Unit, SYSMAC BUS/2 Remote I/O Master Unit, and BASIC
Unit.

Link Units are used to create communications links between PCs or between
PCs and other devices. Link Units include SYSMAC NET Link Unit, SYSMAC
LINK Unit, and, sometimes, SYSMAC BUS/2 Remote I/O Master Unit.

Other product groups include Programming Devices , Peripheral Devices ,
and DIN Track Products .

1-5 Overview of PC Operation

1,2 3.

The following are the basic steps involved in programming and operating a CV-
series PC. Assuming you have already purchased one or more of these PCs,
you must have a reasonable idea of the required information for steps one and
two, which are discussed briefly below. The relevant sections of this manual that
provide more information are listed with relevant steps.

1. Determine what the controlled system must do, in what order, and at what
times.

2. Determine what Racks and what Units will be required. Refer to the CV-se-
ries PCs Installation Guide. If a Link System is required, refer to the ap-
propriate System Manual.

Overview of PC Operation Section 1-5

3. On paper, assign all input and output devices to 1/O points on Units and de-
termine which 1/O bits will be allocated to each. If the PC includes Special I/O
Units, CPU Bus Units, or Link Systems, refer to the individual Operation
Manuals or System Manuals for details on I/O bit allocation. (Section 3
Memory Areas)

4. Divide the required control actions into processes that need to be treated as
individual sections and create an SFC program to control the flow of execu-
tion of the processes. Refer to the CV-series PCs Operation Manual: SFC
for details on the SFC program. If desired, you can also program the PC
without using an SFC program by setting the PC for ladder-only operation
from the CVSS/SSS.

5. Using relay ladder symbols, write a program that represents the sequence
of required operations within each process and their inter-relationships. If
you are using an SFC program, you will actually be writing transition pro-
grams and action programs within the SFC program. Be sure to also pro-
gram appropriate responses for all possible emergency situations. (Section
4 Writing Programs, Section 5 Instruction Set, Section 6 Program Execution
Timing)

6. Write the program in the CVSS/SSS offline, and then switch to online opera-
tion and transfer the program to Program Memory in the CPU. The program
can also be written or altered online. Refer to the CVSS/SSS Operation
Manual for details.

7. Generate the 1/O table with 1/0 Units installed. The 1/O table can be gener-
ated either online from the CVSS/SSS, or edited offline and then trans-
ferred. Always turn the PC off and on after transferring the 1/O table. The PC
will not run until the 1/0 table has been registered. Refer to the CVSS/SSS
Operation Manual for detalils.

8. The PC Setup controls a variety of basic options in PC operation (such as
the method of I/O refreshing and PC mode at start-up). The operating pa-
rameters in the PC Setup can be left in their default settings or changed with
the CVSS/SSS as required. Refer to Section 7 PC Setup for details.

9. Debug the program, first to eliminate any syntax errors, and then to find
execution errors. Refer to the three CVSS/SSS operation manuals for de-
tails on debugging operations. (Section 8 Error Processing)

10. Wire the PC to the controlled system. This step can actually be started as
soon as step 3 has been completed. Refer to the CV-series PCs Installation
Guide and to other Operation Manuals and System Manuals for details on
individual Units.

11. Test the program in an actual control situation and carry out fine tuning as
required. Refer to the CVSS/SSS operation manuals for details on debug-
ging operations. (Section 8 Error Processing)

12. Record two copies of the finished program on masters and store them safely
in different locations. Refer to the CVSS/SSS operation manuals for details.

Note 1. The date and time are not set when the CPU is shipped. Set the date and
time by the procedure described in the CVSS/SSS Operation Manuals.

2. There is an error log in the PC. This log can be cleared by turning ON the
Error Log Reset Bit (A00014).

Control System Design Designing the Control System is the first step in automating any process. A PC
can be programmed and operated only after the overall Control System is fully
understood. Designing the Control System requires, first of all, a thorough un-
derstanding of the system that is to be controlled. The first step in designing a
Control System is thus determining the requirements of the controlled system.

5

PC Operating Modes

Section 1-6

Input/Output Requirements

Sequence, Timing, and
Relationships

Unit Requirements

The first thing that must be assessed is the number of input and output points
that the controlled system will require. This is done by identifying each device
that is to send an input signal to the PC or which is to receive an output signal
from the PC. Keep in mind that the number of I/O points available depends on
the configuration of the PC.

Next, determine the sequence in which control operations are to occur and the
relative timing of the operations. Identify the physical relationships between the
I/O devices as well as the kinds of responses that should occur between them.

For instance, a photoelectric switch might be functionally tied to a motor by way
of a counter within the PC. When the PC receives an input from a start switch, it
could start the motor. The PC could then stop the motor when the counter has
received a specified number of input signals from the photoelectric switch.

Each of the related tasks must be similarly determined, from the beginning of the
control operation to the end.

The actual Units that will be mounted or connected to PC Racks must be deter-
mined according to the requirements of the I/O devices. Actual hardware specifi-
cations, such as voltage and current levels, as well as functional considerations,
such as those that require Special I/O Units, CPU Bus Units, or Link Systems will
need to be considered. In many cases, Special /0 Units, CPU Bus Units or Link
Systems can greatly reduce the programming burden. Details on these Units
and Link Systems are available in appropriate Operation Manuals and System
Manuals.

Once the entire Control System has been designed, the task of programming,
debugging, and operation as described in the remaining sections of this manual
can begin.

1-6 PC Operating Modes

PROGRAM Mode

DEBUG Mode

MONITOR Mode

RUN Mode

CV-series PCs have four operation modes: PROGRAM, DEBUG, MONITOR,
and RUN. The Unit will automatically enter the mode specified in the PC Setup
(default setting: PROGRAM mode). Refer to Section 7 PC Setup for details. The
PC mode can be changed from a Peripheral Device. The function of each mode
is described briefly below.

PROGRAM mode is used when making basic changes to the PC program or set-
tings, such as transferring, writing, changing, or checking the program, generat-
ing or changing the I/O table, or changing the PC Setup. The program cannot be
executed in PROGRAM mode. Output points at Output Units will remain OFF,
even when the corresponding output bit is ON.

DEBUG mode is used to check program execution and 1/O operation after syn-
tax errors in the program have been corrected. With SFC programs, a single
step can be checked for errors from a Peripheral Device using the DEBUG op-
eration. Output points at Output Units will remain OFF, even when the corre-
sponding output bit is ON.

MONITOR mode is used when monitoring program execution, such as making a
trial run of a program. The program is executed just as it is in RUN mode, but bit
status, timer and counter SV/PV, and the data content of most words can be
changed online. PC operation in MONITOR mode is significantly slower than it is
in RUN mode. Output points at Output Units will be turned ON when the corre-
sponding output bit is ON.

RUN mode is used when operating the PC in normal control conditions. Bit sta-
tus cannot be Force Set or Reset, and SVs, PVs, and the data cannot be
changed online. Output points at Output Units will be turned ON when the corre-
sponding output bit is ON.

Peripheral Devices

Section 1-7

1-7 Peripheral Devices

Graphic Programming
Console

Programming Console

Note

The CV Support Software (CVSS) and the SYSMAC Support Software (SSS)
are the main Peripheral Device used to program and monitor CV-series PCs.
You must have the CVSS/SSS to program and operate these PCs. The following
Peripheral Devices are available for basic programming/monitoring.

The CVSS does not support new instructions added for version-2 CVM1 PCs.
The SSS does not support SFC programming (CV500, CV1000, and CV2000).
New instructions added for version-2 CVM1 PCs are also supported by ver-
sion-1 CV-series Programming Consoles.

The Graphics Programming Console (GPC) can be used for monitoring and pro-
gramming of PCs, but does not support SFC programming.

The Programming Console can be used for onsite monitoring and programming
of PC, but does not support SFC programming and other advanced program-
ming/debugging operations.

CV-series Manuals Section 1-8

1-8 CV-series Manuals

The following manuals are available for CV-series products. Manuals are also
available for compatible C-series products (see next section). Catalog number
suffixes have been omitted; be sure you have the current version for your region.

Product Manual Cat. No.
CV-series PCs CV-series PCs Installation Guide W195
CV-series PCs Operation Manual: SFC w194
CV-series PCs Operation Manual: Ladder Diagrams w202
CV-series PCs Operation Manual: Host Link System, W205
CV500-LK201 Host Link Unit
CV Support Software (CVSS) The CV Series Getting Started Guidebook W203
CV Support Software Operation Manual: Basics W196
CV Support Software Operation Manual: Offline w201
CV Support Software Operation Manual: Online W200
SYSMAC Support Software Operation | SSS installation procedures, hardware information for the SSS, and | W247
Manual: Basics general basic operating procedures (including data conversion
between C-series and CVM1 PCs).
SYSMAC Support Software Operation | Detailed operating procedures for the C-series PCs. W248
Manual: C-series PC Operations
SYSMAC Support Software Operation | Detailed operating procedures for CVM1 PCs. W249
Manual: CVM1 Operations
Graphic Programming Console (GPC) | CV500-MP311-E Graphic Programming Console Operation Manual | W216
Programming Console CVM1-PRS21-E Programming Console Operation Manual w222
SYSMAC NET Link System SYSMAC NET Link System Manual w213
SYSMAC LINK System SYSMAC LINK System Manual w212
SYSMAC BUS/2 Remote I/0 System | SYSMAC BUS/2 Remote I/O System Manual W204
CompoBus/D Device Network CompoBus/D (DeviceNet) Operation Manual) W267
CV-series Ethernet Unit CV-series Ethernet System Manual W242
BASIC Unit BASIC Unit Reference Manual w207
BASIC Unit Operation Manual W206
Personal Computer Unit Personal Computer Unit Operation Manual W251
Personal Computer Unit Technical Manual W252
Motion Control Unit Motion Control Unit Operation Manual: Introduction W254
Motion Control Unit Operation Manual: Details W255
Temperature Controller Data Link Unit | CV500-TDL21 Temperature Controller Data Link Unit Operation w244
Manual
Memory Card Writer CV500-MCWO01-E Memory Card Writer Operation Manual w214
Optical Fiber Cable Optical Fiber Cable Installation Guide W156

C-series — CV-series System Compatibility Section 1-9

1-9 C-series—CV-series System Compatibility

The following table shows when C-series Units can be used and when CV-series
Units must be used. Any C-series Unit or Peripheral Device not listed in this table

cannot be used with the CV-series PCs.

Unit C Series CV Series Remarks
CPU Rack CPU No Yes CV500-CPUO1-EV1, CV1000-CPUO1-EV1],
CV2000-CPUO1-EV1, CVYM1-CPUO1-EV2,
CVM1-CPU11-EV2, and CVM1-CPU21-EV2
Power Supply No Yes CV500-PS221, CV500-PS211, and
CVM1-PA208
CPU Backplane No Yes CV500-BC031, CV500-BC051, CV500-BC101,
CVM1-BC103, and CVM1-BC053
1/0 Control Unit No Yes CV500-IC[01
Expansion CPU Backplane No Yes CV500-BI111
Expansion 1/0 Backplane No Yes CV500-BI042, CV500-BI062, CV500-BI112,
CVM1-BI114, and CVM1-BI064 (C500
Expansion 1/0 Racks can be used with certain
limitations.)
16-/32-/64-point 1/0 Units Yes Yes
Special I/O Units Yes Yes Applicable Units include Analog Input, Analog
Output, High-speed Counter, PID, Position
Control, Magnetic Card, ASCII, ID Sensor, and
Ladder Program I/O Units (The C500-ASC03
cannot be used.)
BASIC Unit No Yes CV500-BSC[1
Personal Computer Unit No Yes CV500-VP213-E/217-E/223-E/227-E
Temperature Control Data Link Unit No Yes CV500-TDL21
Link SYSMAC NET No Yes CV500-SNT31
Systems SYSMAC LINK No Yes CV500-SLK11 and CV500-SLK21
Host Link Unit No Yes CV500-LK201
Ethernet Unit No Yes CV500-ETNO1
Remote I/O | SYSMAC BUS Units Yes Yes
Systems SYSMAC BUS/2 No Yes CV500-RM211/221 and CV500-RT211/221
Peripheral CV Support Software No Yes CV500-ZS3AT1-EV2 (3 1/2” floppy disks) and
Devices (See note.) CV500-ZS5AT1-EV2 (5 1/4” floppy disks) for
IBM PC/AT compatible
SYSMAC Support Yes Yes C500-ZL3AT1-E (3.5" floppy disks) for IBM
Software (SSS) (See note.) PC/AT compatible
Graphic Programming Yes (Main Yes GPC: 3G2C5-GPCO03-E
Console unitonly) | (System System Cassette: CV500-MP311-E
Cassette)
(See note.)
Programming Console No Yes CVM1-PRS21-EV1 (set)
(See note.)

Note The CVSS does not support new instructions added for version-2 CVM1 PCs.
The SSS does not support SFC programming (CV500, CV1000, and CV2000).
New instructions added for version-2 CVM1 PCs are also supported by ver-
sion-1 CV-series Programming Consoles.

Networks and Remote I/O Systems Section 1-10

1-10 Networks and Remote 1/O Systems

SYSMAC NET Link System

Systems that can be used to create networks and enable remote I/O are
introduced in this section. Refer to the operation manuals for the Systems for
details.

The SYSMAC NET Link System is a LAN (local area network) for use in factory
automation systems. The SYSMAC NET Link System can consist of up to 128
nodes among which communications may be accomplished via datagrams,
data transfers, or automatic data links.

Datagrams transmit and receive data using a command/response format. Com-
mands can be issued from the user program by the DELIVER COMMAND
instruction (CMND(194)).

Data can also be transmitted and received using the NETWORK SEND and
NETWORK RECEIVE (SEND(192)/RECV(193)) instructions in the user pro-
gram. Up to 256 words of data can be transferred for each instruction.

Automatic data links allow PCs and computers to create common data areas.

SYSMAC NET Link Unit
CV500-SNT31

Up to 4 Units can
be mounted.

CV-series
CPU Rack/Expansion CPU Rack

L Line Server

Center Power
Feeder

=] 4 C200H
Personal b g g C500
computer) &/ C1000H

% ‘ ' " C2000H

Note Up to four SYSMAC NET Link Units (CV500-SNT31) can be mounted to the

10

CPU Rack and/or Expansion CPU Rack of each CV-series PC.

Networks and Remote I/O Systems Section 1-10

SYSMAC LINK System

Networks can also be created using SYSMAC LINK Systems. A SYSMAC LINK
System can consist of up to 62 PCs, including the CV500, CV1000, CV2000,
CVM1, C200H, C1000H, and C2000H. Communications between the PCs is ac-
complished via datagrams, data transfers, or automatic data links in ways simi-
lar to the SYSMAC NET Link System.

The main differences between SYSMAC NET Link and SYSMAC LINK Systems
is in the structure of automatic data links and in the system configuration, e.g.,
only PCs can be linked in SYSMAC LINK Systems, whereas other devices can
form nodes in SYSMAC NET Link Systems.

Datagrams transmit and receive data using a command/response format. Com-
mands can be issued from the user program by the DELIVER COMMAND
instruction (CMND(194)).

Data can also be transmitted and received using the NETWORK SEND and
NETWORK RECEIVE (SEND(192)/RECV(193)) instructions in the user pro-
gram. Up to 256 words of data can be transferred for each instruction.

Automatic data links allow PCs and computers to create common data areas.
SYSMAC LINK Unit

CV500-SLK11 (optical)
CV500-SLK21 (wired)

Up to 4 Units can
be mounted.

CV-series
CPU Rack/Expansion CPU Rack

& I
¥\
SRR

B s o) vpwee rason T wm{

I CV500/CV1000/
CV2000/CVM1
C200H/C1000H/

Note Up to four SYSMAC LINK Units (CV500-SLK11/21) can be mounted to the CPU

Rack and/or Expansion CPU Rack of each CV-series PC.

11

Networks and Remote I/O Systems Section 1-10

SYSMAC BUS/2 Remote 1/O
System

12

Remote I/O can be enabled by adding a SYSMAC BUS/2 Remote I/0O System to
the PC. The SYSMAC BUS/2 Remote I/O System is available in two types: opti-
cal and wired.

Two Remote I/O Master Units, optical or wired, can be mounted to the CV500 or
CVM1-CPUO1-EV2 CPU Rack or Expansion CPU Rack. Four Remote 1/0O Mas-
ter Units can be mounted to the CV1000, CV2000, CVM1-CPU11-EV2, or
CVM1-CPU21-EV2 CPU Rack or Expansion CPU Rack.

Up to eight Remote I/0O Slave Racks can be connected per PC.

Slaves can be used to provide up to 1,024 remote I/O points for the CV500 or
CVM1-CPUO01-EV2, and up to 2,048 remote I/O points for the CV1000, CV2000,
CVM1-CPU11-EV2, or CVM1-CPU21-EV2.

A Programming Device (such as the CVSS/SSS) can be connected to up to two
Remote 1/O Slave Units for each Remote 1/0 Master Unit as long as a total of no
more than four Programming Devices are connected per PC.

Remote 1/0O Master Unit
CV500-RM211 (optical)
CV500-RM221 (wired)

CV500, CVM1-CPUO1-EV2: 2 Masters max. can be mounted
CVv1000, CV2000, CVM1-CPU11-EV2, CVM1-CPU21-EV2:
4 Masters max. can be mounted

CV-series

Remote 1/O Slave

Up to 8 Slave can be con-
nected per PC for 58M
Slaves; 4 Slaves for 122M
or 54MH Slaves.

Remote 1/O Slave Unit
CV500-RT211 (optical)
g CV500-RT221 (wired)

Networks and Remote I/O Systems Section 1-10

SYSMAC BUS Remote I/0
System

Remote I/O can also be enabled by using the C-series SYSMAC BUS Remote
I/O System with CV-series PC.

Remote I/O Master Units can be mounted on any slot of the CPU Rack, Expan-
sion CPU Rack, or Expansion I/0 Rack. Up to four Masters can be mounted for
the CV500 or CVM1-CPUO01-EV2, up to eight Masters for the Cv1000, CVV2000,
CVM1-CPU11-EV2, or CVM1-CPU21-EV2.

For each Master, up to two Slave Racks can be connected for the CV500 or
CVM1-CPUO1-EV2; up to eight Slave Racks for the CV1000, CV2000,
CVM1-CPU11-EV2, or CVM1-CPU21-EV2. No more than 16 Slave Racks can
be connected per PC.

Slaves can be used to provide up to 512 remote I/O points for the CV500 or
CVM1-CPUO1-EV2; up to 1,024 remote I/O points for the Cv1000, CVV2000, or
CVM1-CPU11-EV2, and up to 2,048 remote /O points for the
CVM1-CPU21-EV2.

Programming Devices cannot be connected to SYSMAC BUS Slave Racks.

When a C200H 10-slot Backplane is used is used as a SYSMAC BUS Slave
Rack, only the eight leftmost slots can be used.

Remote 1/0 Master Unit
3G2A5-RM001-(P)EV1 (optical)
C500-RM201 (wired)

Up to 8 Units

CV-series
CPU Rack/Expansion CPU
Rack/Expansion 1/0 Rack

C-series
Remote 1/O Slave Rack

13

Networks and Remote I/O Systems Section 1-10

Host Link System
(SYSMAC WAY)

BASIC Unit

14

The CV-series PCs can be connected to a host computer with the host link con-
nector via the CPU or a CV500-LK201 Host Link Unit mounted to a Rack.

RS-232C or RS-422 communications can be used depending on the switch set-
ting. When RS-422 is selected, up to 32 PCs can be connected to a single host.

Data is transmitted and received by commands and responses.

Host link connector

The BASIC Unit can be connected to a personal computer to enable commu-
nications with the PC using the BASIC programming language. Up to 512 bytes
(256 words) of data can be transferred between the BASIC Unit and the CPU by
the PC READ/WRITE command without using the PC program.

Up to 256 words of data can also be transferred between the BASIC Unit and the
PC's CPU by using the NETWORK SEND and NETWORK RECEIVE
(SEND(192)/RECV(193)) instructions in the PC program.

New CPUs and Related Units Section 1-11

Data can also be transferred to other BASIC Units mounted on the same PC, or
to BASIC Units mounted to other PCs connected by networks formed using a
SYSMAC NET Link or SYSMAC LINK System. RS-232C, RS-422, Centronics,
and GPIB interfaces are available.

BASIC Unit
CV500-BSC[]1

CV-series
CPU Rack/Expansion
CPU Rack

Personal com-
puter

Personal Computer Unit The Personal Computer Unit is a full-fledged IBM PC/AT compatible that can be
used to run independent programming directly on a Rack to eliminate the need
for separate installation space. It can run along or connected to any of the normal
peripherals supported by IBM PC/AT compatibles (mice, keyboards, monitors,
data storage devices, etc.), and as a CPU Bus Unit, the Personal Computer Unit
interfaces directly to the PC’s CPU though the CPU bus to eliminate the need for
special interface hardware, protocols, or programming.

1-11 New CPUs and Related Units

The following new CV-series CPUs and related Units are included in this version
of the manual for the first time. Refer to relevant sections of this manual or the
CV-series PC Operation Manual: Ladder Diagrams for further detalils.

Unit Model number Main specifications
CPU CVM1-CPUO1-EV2 I/O capacity: 512 pts; Ladder diagrams only
CVM1-CPU11-EV2 I/O capacity: 1,024 pts; Ladder diagrams only
CVM1-CPU21-EV2 I/O capacity: 2,048 pts; Ladder diagrams only

CV500-CPUO1-EV1 I/O capacity: 512 pts; Ladder diagrams or SFC + ladder diagrams
CV1000-CPUO1-EV1 I/O capacity: 1,024 pts; Ladder diagrams or SFC + ladder diagrams
CV2000-CPUO1-EV1 I/O capacity: 2,048 pts; Ladder diagrams or SFC + ladder diagrams

Temperature Controller | CV500-TDL21 Connects up to 64 temperature controllers via 2 ports.
Data Link Unit

15

Improved Specifications

Section 1-13

1-12 CPU Comparison

The following table shows differences between the various CV-series CPUs.

CPU CVM1- CVM1- CVM1- CV500- CV1000- CV2000-
CPUO1-EV2 CPU11-EV2 CPU21-EV2 CPUO1-EV1 CPUO1-EV1 CPUO1-EV1

Ladder diagrams Supported Supported Supported Supported Supported Supported

'I?nri(;‘ggram- SFC Not supported | Not supported | Not supported | Supported Supported Supported
Instructions 284 284 285 169 170 170

Speed ﬁzf;ﬁctions (ms) |0-15100.45 | 0125100375 0.125t00.375 |0.1510045 | 0.125100.375 |0.125t00.375
Other 0.6t09.9 0.5t08.25 0.5t08.25 0.61t09.9 0.5t0 8.25 0.5t08.25
instructions (ms)

Program capacity 30K words 30K words 62K words 30K words 62K words 62K words

Local I/O capacity 512 pts 1,024 pts 2,048 pts 512 pts 1,024 pts 2,048 pts

Remote SYSMAC BUS/2 1,024 pts 2,048 pts 2,048 pts 1,024 pts 2,048 pts 2,048 pts

L/gpacity SYSMAC BUS 512 pts 1,024 pts 2,048 pts 512 pts 1,024 pts 1,024 pts

DM Area 8K words 24K words 24K words 8K words 24K words 24K words

32K words 32K words 32K words
Expansion DM Area Not supported | Not supported | each for 8 Not supported | each for 8 each for 8
banks banks banks

Timers 512 1,024 1,024 512 1,024 1,024

Counters 512 1,024 1,024 512 1,024 1,024

SFC steps None None None 512 1,024 1,024

Step Flags None None None 512 1,024 1,024

Transition Flags None None None 512 1,024 1,024

1-13 Improved Specifications

1-13-1 Upgraded Specifications

The following improvements were made December 1992 and are applicable to
all Cv500-CPUO1-E and CV1000-CPUO1-E CPUs with lot numbers in which the
rightmost digit is 3 (LJLJ[J3) or higher.

16

1,2 3.

1. The MLPX(110) (4-TO-16 DECODER) instruction has been improved to

also function as a 8-t0-256 decoder and the DMPX(111) (16-TO-4 ENCOD-
ER) instruction has been improved to also function as a 256-to-8 encoder.
To enable this improvement, the digit designator (Di) has been changed as
shown below. Refer to 5-17-8 DATA DECODER — MLPX(110) and 5-17-9
DATA ENCODER — DMPX(111) for details on these instructions.

Digit number:

3 2 10

0

4-t0-16/16-to-4: 0 to 3
8-t0-256/256-t0-8: 0 or 1

|—> Specifies the first digit to be converted

Number of digits to be converted

4-t0-16/16-t0-4: 0 to 3 (1 to 4 digits)
8-t0-256/256-t0-8: 0 or 1 (1 or 2 digits)

~ Process

0: 4-to-16/16-to-4
1: 8-t0-256/256-t0-8

2. The following operating parameter has been added to the PC Setup. Refer
to Section 7 PC Setup for details on the PC Setup.
JMP(004) 0000 Processing
Y: Enable multiple usage (default)
N: Disable multiple usage

Improved Specifications

Section 1-13

3. The operation of Completion Flags for timers has been changed so that the
Completion Flag for a timer turns ON only when the timer instruction is
executed with a PV of 0000 and not when the timer’s PV is refreshed to a PV
value of 0000, as was previously done.

Only the timing of the activation of the Completion Flag has been changed,
and the timer’s PV is still refreshed at the same times (i.e., when the timer
instruction is executed, at the end of user program execution, and every
80 ms if the cycle time exceeds 80 ms).

Refer to 5-3 Data Areas, Definers, and Flags for details on timer and counter
instructions.

4. The READ(190) (/O READ) and WRIT(191) (I/O WRITE) instructions have
been improved so that they can be used for Special I/O Units on Slave
Racks under the following conditions.

a) The lot number of the Remote I/O Master Unit and Remote I/O Slave Unit
must be the same as or latter than the following.

01 X 2

1-13-2 Version-1 CPUs

PT Link Function

EEPROM Writes

New Command
Faster Host Links

Faster Searches

‘ —I——> 1992
October (Y: November; Z: December)

1st

b) The DIP switch on the Remote I/O Slave Unit must be set to “54MH.”

c) The Special I/0O Unit must be one of the following: AD101, CT012,
CTO021, CT041, ASC04, IDS01-V1, IDS02, IDS21, IDS22, or LDP01-V1.
(The NC221-E, NC222, CP131, and FZ001 cannot be mounted to Slave
Racks.)

Refer to 5-35-1 I/O READ — READ(190) and 5-35-3 I/0 WRITE — WRIT(191)
for details on these instructions.

CV-series CPUs were changed to version 1 from December 1993. The new
model numbers are as follows: CVM1-CPUO1-EV1, CVM1-CPU11-EV1,
CV500-CPU-EV1, CV1000-CPU-EV1, and CV2000-CPU-EV1. (Of these, all
CVM1 CPUs were changed to version 2 from December 1994; refer to the next
sections for details.)

The following additions and improvements were made to create the version-1
CPUs.

The host link interface on the CPU can be used to connect directly to Program-
mable Terminals (PTs) to create high-speed data links. To use the PT links, turn
ON pin 3 of the DIP switch on the CPU. Pin 3 must be turned OFF for host link
connections.

With the new CPUs, you can write to EEPROM Memaory Cards mounted to the
CPU by using the file write operation from a Peripheral Device. A Memory Card
Writer is no longer required for this write operation. Writing is possible in PRO-
GRAM mode only.

A new I/O REGISTER command (QQ) has been added so that words from differ-
ent data areas can be read at the same time.

The communications response time for the built-in host link interface on the CPU
has been improved by a factor of approximately 1.2.

The search speed from Peripheral Devices for instructions and operands has
been nearly doubled.

17

Improved Specifications

Section 1-13

1-13-3 Version-2 CVM1 CPUs

CMP/CMPL

XFER(040)

DMPX(111)

New Flags

New Instructions

Faster Online Editing

New Host Link Commands

18

Note

CVML1 CPUs were changed to version 2 and a new CPU was added from De-
cember 1994. The new model numbers are as follows: CVM1-CPUO1-EV?2,
CVM1-CPU11-EV2, and CVM1-CPU21-EV2.

The following additions and improvements were made to create the version-2
CPUs.

New versions of the CMP(020) and CMPL(021) have been added that are not
intermediate instructions. The new instructions are CMP(028) and CMPL(029)
and are programs as right-hand (final) instructions. A total of 24 other new com-
parison instructions have also been added with symbol mnemonics (e.g., >, +,
and <).

This instruction has been upgraded so that source and destination areas can
overlap.

This instruction has been upgraded so that either the MSB or the LSB can be
specified for use as the end code. Previously only the the MSB could be used.

Underflow and Overflow Flags have been added at A50009 and A50010, re-
spectively. These flags can be turned ON or OFF when executing ADB, ADBL,
SBB, and SBBL and can be saved or loaded using CCL and CCS.

A total of 125 new instructions have been added. These instructions are sup-
ported by version-2 CPUs only.

The time that operation is stopped for online editing has been reduced and is no
longer added to the cycle time. The following are just a couple of examples.

Edit Time operation is stopped

Adding or deleting one instruction block at the | Approx. 0.5 s
beginning of a 62K-word program

Deleting an instruction block containing JME Approx. 2.0 s
from the beginning of a 62K-word program

The above speed increase also applies to all V1 CPUs with lot numbers in which
the rightmost digit is 5 ((JCJI5) or higher.

New C-mode commands have been added and the functionality of existing com-
mands has been improved as follows:

New Commands

* RL/WL: Read and write commands for the CIO Area.

* RH/WH: Read and write commands for the CIO Area.

» CR: Read command for the DM Area.

* R#/R$/R%: SV read commands.

* W#/W$/W%: SV change commands.

* *! |nitialization command.

Improved Commands

e The Link Area (CIO 1000 to CIO 1063) and Holding Area (CIO 1200 to
CIO 1299) can now be specified for the KS, KR, KC, and QQ commands.

» CVM1-CPU21-EV1 can now be read for the MM command.

The above new and improved commands can also be used with all V1 CPUs
with lot numbers in which the rightmost digit is 5 ((CJCJ15) or higher.

Only the following Programming Devices support version-2 CPUs: SSS
(C500-ZL3AT-E) and the CVM1-PRS21-V1 Programming Console
(CVM1-MP201-V1). Of these, the SSS does not support SFC and thus cannot
be used for the CVv500, CV1000, and CV2000. Use the CVSS for these PCs.

Improved Specifications

Section 1-13

1-13-4 Upgraded Specifications

The following improvements were made December 1995 and are applicable to
all Cv500/CVv1000/CV2000-CPUO1-EV1 and CYM1-CPU01/CPU11/CPU21-EV2
CPUs with lot numbers in which the rightmost digit is 6 ((J1(J6) or higher.

Simplified Backup Function Added

Backing Up Data to a
Memory Card

1,2 3.

Transferring Data Back to
CPU Unit Memory

1,2 3.

Specifying Files

Note

Starting and Confirming
Data Transfers

Note

Specifications have been changed so that the user program, Extended PC Set-
up, and IOM/DM data can be backed up from memory in the CPU Unit to a
Memory Card without using a Programming Device, and so that the data backed
up in the Memory Card can be transferred back to memory in the CPU Unit with-
out using a Programming Device. (This method is provided as an easy way to
backup and restore data. We still recommend that a Programming Device be
used to confirm all essential backup and restore operations.)

Use the following procedure to prepare to backup data in the memory of the CPU
Unit to a Memory Card.

1. Insert a Memory Card that is not write-protected and check to be sure the
available capacity is sufficient for the files that will be created.

2. Confirm that the Memory Card is not being accessed by file memory opera-
tions or from a Programming Device.

3. Turn OFF pin 5 on the DIP switch on the CPU Unit.
Use the following procedure to prepare to transfer data on the Memory Card to
the memory of the CPU Unit.

1. Insert the Memory Card and be sure that it contains the desired files.

2. Check the file checksums and sizes to be sure that they are correct.
3. Confirm that the CPU Unit is in PROGRAM mode.
4

. Confirm that the Memory Card is not being accessed from a Programming
Device.

5. Turn ON pin 5 on the DIP switch on the CPU Unit.

Pins 1 and 2 on the DIP switch are used to specify the files to be transferred.
These pins are normally used to specify the baud rate for a Programming De-
vice, so be sure to return them to their original settings when you finish backing
up or restoring data. Set pins 1 and 2 as shown in the following table.

Pin 1 Pin2 User program Extended PC Setup IOM/DM

OFF OFF Transferred. Transferred. Transferred.

OFF ON Transferred. Not transferred. Not transferred.

ON OFF Not transferred. Transferred. Not transferred.

ON ON Not transferred. Not transferred. Transferred.

File name BACKUP.OBJ BACKUP.STD IOM: BACKUP.IOM

(See note.) DM: BACKUPDM.IOM
EM: BACKUPE*.IOM

(* = bank number)

Any files of the same name will be automatically overwritten when backing up to
Memory Card.

Data transfers are started by pressing the Memory Card power switch for 3 se-
conds. If the transfer ends normally, the Memory Card indicator will flash once
and will then go out when the transfer has completed. The time required will de-
pend on the about of data being transferred. If there is insufficient memory avail-
able on the Memory Card to back up the specified data or if the specified files are
not present on the Memory Card when restoring data, the Memory Card indica-
tor will flash 5 times and then go out.

Approximately 17 s will be required to backup all data except the EM files for the
CV1000 using a 1-Mbyte Memory Card. Approximately 2 s will be required to
restore the same data to the CPU Unit's memory.

19

Improved Specifications

Section 1-13

Application of Commercial Memory Cards

20

Note

The following commercially available memory cards can be used. The proce-
dures and applications for using these memory cards is exactly the same as for
the Memory Cards provided by OMRON.

 RAM Memory Cards conforming to JEIDA4.0 and of the following sizes:
64 Kbytes, 128 Kbytes, 256 Kbytes, 512 Kbytes, 1 Mbyte, and 2 Mbytes.

The 2-Mbyte Memory Cards cannot be used in the CV500-MCW01 Memory
Card Writer.

SECTION 2
Hardware Considerations

This section provides information on hardware aspects of CV-series PCs that are relevant to programming and software op-

eration. These include indicators on the CPU and basic PC configuration. This information is covered in more detail in the
CV-series PC Installation Guide

2-1 CPU COmMPONENTS. . . . oottt e e e e e e e 22
2-1-1 INdiCAtOrS. . oottt 22
2-1-2 SWILCNES. . . o 23

2-2 Program MemOry.o 24

2-3 MemOry Cards.ot 25
2-3-1 Mounting and Removing Memory Cards., 25
2-3-2 File Transfer between the CPUand Memory Card 26

2-4 Data Memory and Expansion Data Memory Unit. 28

2-5 1/O Control Unit and I/O Interface Unit Displays. 29

2-6 Peripheral DeviCes o e 31

2-7 PC CoNnfiguration. e 31

21

CPU Components

Section 2-1

2-1 CPU Components

The following diagram shows the basic components of the CPU that are used in
general operation of the PC.

Indicators

POWER
AUN

ERROR

WOT.

AL ARM

OUT N,

COMM

SYSTEM

PROTECT
| _NoaMAl

Protect keyswitch
Used to write-protect the Pro-

SYSMAC CV1000 gram Memory (i.e., the Ex-
PROGRAMMABLE CONTROLLER tended PC Setup and the user
program).
] [
5 Peripheral device connector
PERIPHERAL
]
4 Host interface
EM Card compartment
(CV1000, CV2000, or
CVM1-CPU21-EV2 only; ——
optional) =R RS-422/RS-232C selector
ey 9—
RS-422
EX DM
Memory Card indicator
Lit when power is supplied to
the Memory Card.
Memory Card (optional), DIP switch,
and battery compartment
Do not pull out the Memory Card while
the Memory Card indicator is lit. The
Memory Card power switch must be
ON for the Memory Card to operate.
—

2-1-1

Indicators

CPU indicators provide visual information on the general operation of the PC.
Although not substitutes for proper error programming using the flags and other
error indicators provided in the data areas of memory, these indicators provide
ready confirmation of proper operation. CPU indicators are shown below and
are described in the following table. Indicators are the same for all CV-series
PCs.

Indicator

Function

POWER (green)

Lights when power is supplied to the CPU.

RUN (green)

Lights when the CPU is operating normally.

ERROR (red)

Lights when an error is discovered in diagnostic operations. When this indicator lights, the RUN
indicator will go off, CPU operation will be stopped, and all outputs from the PC will be turned OFF.

WDT (red)

Lights when a CPU error (watchdog timer error) has been detected. When this indicator lights, the
RUN indicator will go off, CPU operation will be stopped, and all outputs from the PC will be turned
OFF.

ALARM (red)

Lights when an error is discovered in diagnostic operations. PC operation will continue.

OUT INH (orange)

Lights when the Output OFF Bit, AO0015, is turned ON. All PC outputs will be turned OFF.

COMM (orange)

Lights when the host link interface is transmitting or receiving data.

M/C ON (orange)

Lights when power is supplied to the Memory Card. Press the Memory Card power switch once to
turn the power OFF or ON. Do not remove the Memory Card while the power is ON. It may flicker
when the simplified backup function operates. Refer to 1-13-4 Upgraded Specifications for details.

22

CPU Components Section 2-1

2-1-2 Switches

The DIP switch and memory card power switch are shown below and the setting
of these and the other CPU switches are described in the following table.
Switches are the same for all CV-series PCs.

Switch Position Function
Mom(?rgvﬁtirhd Protect keyswitch | Vertical Program Memory (i.e., the Extended PC Setup
P and the user program) is write-protected.
(See note 1)
Horizontal | Program Memory is not write-protected.
RS-422/RS-232C Up Host link communications set for RS-232.
selector (Also see CPU DIP switch pins 4 and 6 below.)
Down Host link communications set for RS-422.
(Also see CPU DIP switch pins 4 and 6 below.)
Memory Card power | Not Press and release to turn the power on or off.
switch (See note 4.) | applicable | (The M/C ON indicator lights when power is on.)
CPUDIP | Pins 1, 2 | OFF, OFF | Peripheral device communications: 50,000 bps
E‘n%fgs 3 ON, OFF | Peripheral device communications: 19,200 bps
DIP switch and 4.) OFF, ON Peripheral device communications: 9,600 bps
l!l © ON, ON Peripheral device communications: 4,800 bps
= : Pin 3 OFF Communicate via Host Link communications
ON Communicate with PT via NT Link communica-
- -
tions.
o R - - -
Pin 4 OFF Host link communications governed by PC Set-
M- up. (See note 2)
% ON Following settings used for host link communica-
OFF <«——» ON tions, regardless of PC Setup: 9,600 bps, unit
number 00, even parity, 7-bit data, 2 stop bits.
Note: The above settings apply to CPUs
manufactured from July 1995 (lot number **75
for July 1995). For CPUs manufactured before
July 1995 (lot number **65 for June 1995), only
1 stop bit will be set and the baud rate will be
2,400 bps.
Pin 5 OFF Files are not transferred from the Memory Card
(See automatically at start-up.
note 4.)
ON The program file (AUTOEXEC.OBJ) and PC
Setup file (AUTOEXEC.STD) will be transferred
from the Memory Card to the CPU automatically
at start-up.
Pin 6 OFF The termination resistance is off.
ON The termination resistance is on.
(This setting is used for the last Unit in a RS-422
Host Link System only; intermediate Units must
be set to OFF.)
Note 1. The user program can also be protected from a Peripheral Device.

Factory settings are 9,600 bps, 7-bit data, even parity, and 2 stop bits.

3. The baud rate must be set to 50,000 bps when the Graphic Programming
Console or Programming Console is connected to the PC, and to 9,600 bps
when a computer running the CV Support Software is connected.

4. The following switches and pins are also used for the simplified backup
function. Pins 1 and 2 are used to specify files, pin 5 is used to specify the
direction of the transfer, and the Memory Card power switch is used to start
data transfers. Refer to 1-13-4 Upgraded Specifications for details.

23

Program Memory

Section 2-2

2-2 Program Memory

PC Setup

Program Area

24

Program Memory is contained in the CPU and is divided into two areas, the PC
Setup and the Program Area. There are 32K words of Program Memory avail-
able in the CV500, CVM1-CPUO1-EV2, or CVM1-CPU11-EV2, and 64K words
available in the CV1000, CV2000, or CVM1-CPU21-EV2. The first 2K words in
both groups of PCs is taken up by the PC Setup, leaving 30K words in the
CV500, CVM1-CPUO1-EV2, or CVM1-CPU11-EV2 Program Area, and 62K
words in the CV1000, CVV2000, or CVM1-CPU21-EV2 Program Area. (One word
contains two bytes.)

Program Memory is backed up by the CPU battery, so data will not be lost during
a power interruption.

Note The program memory chip is built into CV-series PCs and does not need to be
installed by the user.
This area of Program Memory contains the settings described in Section 7 PC
Setup. Basic options in PC operation (such as the method of I/O refreshing and
the PC mode at start-up) are specified in these settings.
The PC Setup is stored in EEPROM, so this data will not be lost even if the back-
up battery power is interrupted.
This area of Program Memory contains the SFC and/or ladder program.
The following table shows the maximum program size (combined total of the
SFC and ladder programs) when SFC programming is used and the maximum
number of steps, transitions, and actions in the SFC program.
PC Program capacity SFC steps | SFC transitions SFC actions
CV500 30K words 512 512 1,024
CV1000 62K words 1,024 1,024 2,048
CVv2000 62K words 1,024 1,024 2,048
CVM1-CPUO01/11-EV2 | 30K words None (SFC programming is not supported.)
CVM1-CPU21-EV2 62K words

Note When ladder programming is used, the program capacity includes 1.85K words
reserved for system use.

Memory Cards Section 2-3

2-3 Memory Cards

File memory (used to store programs and other data) is attached to the CPU in
the form of Memory Cards. The portable, high-capacity Cards allow large quan-
tities of data to be handled by simply switching Memory Cards. Because
Memory Cards are not provided with the PC, they must be selected and installed
in the CPU. Three types of Memory Card are available: RAM, EPROM, and EE-
PROM. Each of these comes in various capacities. Some of the memory is used

for file management and directories.

Memory type | Total capacity | File capacity Model No. Battery life
(See note 1)

RAM 64K bytes 61K bytes HMC-ES641 | About 5 yrs
128K bytes 125K bytes HMC-ES151 | About 3 yrs
256K bytes 251K bytes HMC-ES251 | About 1 yr
512K bytes 506K bytes HMC-ES551 | About 0.5 yrs

EEPROM 64K bytes 61K bytes HMC-EE641 | Not applicable

(Seenote 2) 178K bytes | 125K bytes | HMC-EE151

EPROM 512K bytes 506K bytes HMC-EP551

(Seenote 2) 1 \pyte 1016K bytes | HMC-EP161

Note 1. Batteries should be replaced before the end of their life expectancy. Refer to

the CV-series PC Installation Guide for details on battery replacement.
2. Cannot be used without an CV500-MCW[I[J Memory Card Writer.

The following commercially available memory cards can be used for all
CV500/CV1000/CV2000-CPUO1-EV1 and CVM1-CPU01/CPU11/CPU21-EV2
CPUs with lot numbers in which the rightmost digit is 6 (CJCJCI6) or higher. The
procedures and applications for using these memory cards is exactly the same
as for the Memory Cards provided by OMRON.

* RAM Memory Cards conforming to JEIDA4.0 and of the following sizes:
64 Kbytes, 128 Kbytes, 256 Kbytes, 512 Kbytes, 1 Mbyte, and 2 Mbytes.

Note The 2-Mbyte Memory Cards cannot be used in the CV500-MCWO01 Memory

Card Writer.

Memory Cards must be formatted before use. RAM and EEPROM Cards can be
formatted with the CVSS/SSS or the CV500-MCW[I[J Memory Card Writer;
EPROM Memory Cards can be formatted with the CV500-MCW[J[] Memory
Card Writer only.

&Caution

Memory Cards can be damaged by twisting, shock, or exposure to high temper-
ature, humidity, or direct sunlight. Handle them with care.

2-3-1 Mounting and Removing Memory Cards

Mounting a Memory Card Mount a Memory Card to the CPU using the following procedure.

1,2, 3... 1. Open the cover of the Memory Card compartment.

2. If the Memory Card is RAM or EEPROM, set the write-protect switch to OFF
so that data can be written to the Card.

3. Insert the Memory Card into its compartment. In doing so, a slight resistance
will be felt as the connector on the Memory Card mates with the connector
on the CPU. Continue pushing until the Memory Card is inserted completely
into the CPU. If the Memory Card ON/OFF switch is ON, the Memory Card
indicator will light.

25

Memory Cards

Removing a Memory Card

1,2 3.

Note

Section 2-3
4. Close the cover.
Memory Card indicator
Memory Card
ON/OFF switch] =
o
Memory Card L_J
eject button _J
Memory Card
\ |
o
i
Cover

=

. Open the cover of the Memory Card compartment.
. Press the Memory Card ON/OFF switch once if the Memory Card indicator

is lit. The Memory Card indicator will turn OFF.

. Press the Memory Card eject button. The Memory Card will be released al-

lowing it to be removed.

. Pull out the Memory Card.

5. Close the cover.

[

w

. Do not expose the Memory Card to high temperature, humidity, or direct

sunlight.

. Do not bend the Card or subject it to shock.
. Do not apply excess force to the Card when inserting or removing it.
. Do not remove the Card while the Memory Card indicator is lit; doing so may

result in data errors in the memory.

2-3-2 File Transfer between the CPU and Memory Card

Memory Card Files

26

Note

Data files can be transferred between the Memory Card and PC data areas with
the FILR(180) and FILW(181) instructions. A program file can be transferred
from the Memory Card with FILP(182) or FLSP(183) to change the program dur-
ing operation. Refer to details on these instructions later in the manual.

Memory Card files are identified by both their filename and filename extension.
The following table lists the filenames and filename extensions that are used
with the PC. Filenames are eight characters long and recorded in ASCII. If fewer
than eight characters are needed, enter spaces (ASCII 20) in the remaining by-

tes.
Type of file Filename

Extended PC Setup? filename.STD
Data files filename.|IOM
Ladder program files (files saved with the partial save filename.LDP
operation)
SFC program files (one step) filename.SFC
Program file (complete program) filename.OBJ
Extended PC Setup! (transferred at start-up) AUTOEXEC.STD
Program file (complete program transferred at start-up) | AUTOEXEC.OBJ
1. Extended PC Setup includes the PC Setup, I/O table, routing tables, data

link tables for data links in SYSMAC LINK and SYSMAC NET Link Systems,

Memory Cards

Section 2-3

File Transfer at Start-up

Reading and Writing
Memory Card Files

1,2 3.

Communications Unit settings, BASIC Unit memory switches, and custom-
ized settings (function codes and data areas).

2. The files that will be transferred at start-up must be named “AUTOEXEC.”

3. Files called BACKUP are created when the simplified backup function is
used. Refer to 1-13-4 Upgraded Specifications for details.

There are two methods for automatic transfer of files at start-up:

1. When pin 5 of the CPU DIP switch is ON, the Extended PC Setup file (AUTO-
EXEC.STD) and the program file (AUTOEXEC.OBJ) are both transferred to
Program Memory at start-up. If either of the files is missing, a memory error
will occur and neither file will be transferred.

2. The PC Setup can be set (setting D, Program Transfer at Start-up) to trans-
fer the program file (AUTOEXEC.OBJ) from the Memory Card to the PC au-
tomatically when the PC is turned on. In this case the extended PC Setup file
(AUTOEXEC.STD) is not transferred.

With either method, the transfer will not proceed if the write-protect switch is ON,
but will proceed even if the program memory access right is restricted from the
CVSS/SSS. The transfer normally takes about 4 seconds.

To enable file transfer at start-up, the proper files must be recorded on a Memory
Card in advance from the CVSS/SSS. The Extended PC Setup file (AUTOEX-
EC.STD) can be transferred directly from the PC to the Memory Card in online
operations from the CVSS/SSS. The program file (AUTOEXEC.OBJ) can be
created on the Memory Card using one of the following two operations.

* In online operations, transfer the program and other files to the PC and then
transfer the program file to the Memory Card from the PC.

» Convert the program into an object file in offline CVSS/SSS operations, and
then transfer it directly to the Memory Card in online operations.

If the PC is set to transfer the program at start-up but the transfer cannot be com-

pleted for some reason, the Memory Card Startup Transfer Error Flag (A40309)

will be turned ON, a memory error will occur, and the PC will not begin operation.

When the program is not transferred, either find and eliminate the cause of the

error or change the PC settings so that the program won't be transferred, and

then turn the PC off and on. The following are possible reasons that the program

cannot be transferred:

» The write-protect switch is ON.

* One or both AUTOEXEC files are missing.

» The Memory Card power is OFF. (If the M/C ON indicator is not lit when the PC
power is ON, press the Memory Card power switch.)

» The Memory Card is not installed.

It is not possible to write to an EPROM Card installed in the CPU. Use the
CV500-MCWLI Memory Card Writer to write to an EPROM Card. Refer to the

27

Data Memory and Expansion Data Memory Unit Section 2-4

Memory Card Writer Operation Manual for details. Set the drive name to “0”
when accessing a Memory Card.

The RAM and EEPROM cards have a write-protect switch, as shown in the dia-
gram below. Turn this switch to OFF when writing to or erasing the Memory Card.

The three methods of reading and writing Memory Card files are listed below.
1,2, 3... 1. Reading and writing can be performed as an online operation with a Periph-
eral Device, e.g., the CVSS/SSS.
2. Reading and writing can be performed by a command from a host computer.

3. Reading and writing can be performed by instructions in the ladder diagram
program. The four instructions are described in the following table. Refer to
Section 5 Instruction Set for details.

Instruction Function Filename
FILR(180) Reads the specified data file from the Memory Card and writes it to a | filename.|IOM
(READ DATA FILE) specified data area.

FILW(181) Reads a specified amount of data file from a specified data area and | filename.|IOM
(WRITE DATA FILE) writes it to (or creates) the specified data file in the Memory Card.
FILP(182) Reads the specified ladder program file (either one action program or | filename.LDP
(READ PROGRAM FILE) one transition program if SFC programming is being used) from the

Memory Card and writes it in Program Memory.
FLSP(183) Reads the specified SFC program file (one step) from the Memory filename.SFC
(CHANGE STEP PROGRAM) | Card and writes it in Program Memory.

4. Reading and writing can be performed by using the simplified backup func-
tion. Refer to 1-13-4 Upgraded Specifications for details.

2-4 Data Memory and Expansion Data Memory Unit

The size of the Data Memory Area for the CV-series PCs is shown in the follow-

ing table.
PC DM Area capacity Addresses
CV500 or 8K words D00000 to D08191
CVM1-CPUO1-EV2
CV1000, CV2000, 24K words D00000 to D24575
CVM1-CPU11-EV2 or
CVM1-CPU21-EV2

If the above capacities are insufficient, an Expansion Data Memory Unit can be
added to create an EM (Expansion Data Memory) Area with the CV1000,
CV2000, or CVM1-CPU21-EV2. This Unit must be purchased separately as an
option and is not available for other PCs. The EM Area operates the same as the
DM Area, but the EM Area memory is contained in the EM Unit, while DM Area
memory is internal.

EM Area memory is divided into banks of 32K words each. Words E00000 to
E32765 of the current bank can be accessed. The current bank number is con-
tained in the least significant digit of A511. A511 is in a read-only area, but the

28

I/O Control Unit and 1/O Interface Unit Displays Section 2-5

Pullout
lever

M\

Backup
capacitor

current bank number can be changed with the EMBC(171) instruction. Refer to
Section 5 Instruction Set for details.

There are three models of EM Units available, as shown in the following table.

Model Memory capacity Memory banks
CV1000-DM641 64K words 2(0and1l)
CV1000-DM151 128K words 4 (0to 3)
CV1000-DM251 256K words 8(0to7)

The following diagram shows the structure of the EM Unit and identifies its main
components.

Memory element

| | =
()l =

WADE N JAPAN C -OM 1
[T ||||||D[|nnn||m|| o
N © 15 © _] O
ST IHIHNTHT fe—
[T ID [T]

(6] ol Ii=—= CPU

a 2 s *~—

IO T | ee—= connector

al
L1111,
TTTTTRTITITE

Expansion Data Memory Unit

2-5 /O Control Unit and I/O Interface Unit Displays

The 1/O Control Unit and I/O Interface Unit have four-character 7-segment dis-
plays on the front. There are four display modes that display various information
from the CPU, and the current display mode is indicated by the position of the
decimal point on the display, as shown in the following diagram.

[

- C)) -
LV L L LY,
Lit in mode 1 41
Lit in mode 2
Lit in mode 3
Lit in mode 4

Pressing the mode selector switch changes the display to the next mode. The
Unit will automatically enter the mode specified in the PC Setup (default setting:
mode 1). Refer to Section 7 PC Setup for detalils.

If the CPU Rack power supply is OFF or an initialization error has occurred, the
displays will show “——" and the rack number will be displayed when the mode
selector switch is held down, but the mode will not be changed.

29

I/O Control Unit and 1/O Interface Unit Displays Section 2-5

Display Mode 1 In mode 1, the first I/O word allocated to that Rack is displayed. If the 1/O table
hasn’t been registered yet, or an error occurred during registration, the display
will show “0000.” In the following example, the first word allocated is CIO 0036.

Word Word Word
36 37 38

pt. | pt
T o | o

Indicates mode 1 |:|

Display Mode 2 In mode 2, the current CPU status and the rack number of that Rack are dis-
played. The information displayed by the four digits is listed below.

-
!
-
!
o A

[

L) X
(]

-
DX

aad
"
[

aud
"

1,2, 3... 1. The leftmost digit indicates whether or not the CPU is operating.
“f" indicates it is operating.
“-" indicates it is stopped.

2. The second digit indicates whether or not an error has occurred in the PC.
“E” indicates that a fatal error has occurred.
“F" indicates that a non-fatal error has occurred.
“-" indicates that no errors have occurred.

3. The third digit from the left indicates whether or not a peripheral device is
connected to the CPU or Expansion CPU Rack. If a peripheral device is al-
ready connected, another cannot be connected.

“t" indicates that a peripheral device is connected.
“-" indicates that a peripheral device is not connected.

Note Only one Peripheral Device can be connected to the CPU and I/O In-
terface Units for each PC, but three additional Peripheral Devices
can be connected to the SYSMAC BUS/2 Slave Racks.

4. The rightmost digit indicates the rack number.

4

-
e
g
X

-' ,- - - - - Indicates the CPU is in the RUN mode, a non-fatal error has occurred,
- a Peripheral Device is connected, and the rack number is 2.

T_ Indicates the rack number

Indicates whether or not Peripheral Devices are connected.

L A Peripheral Device is connected to the CPU or to an I/O Inter-

~ face Unit.

- : No Peripheral Device is connected to the CPU or to an I/O Inter-
face Unit.

e
ap’

Indicates mode 2

Indicates the error status of the CPU.
E : A fatal error has occurred.

= :Anon-fatal error has occurred.

- : No error has occurred.

Indicates the operating status of the CPU.
& The CPU is operating.

- :The CPU has stopped.

Display Mode 3 In mode 3, the display shows a 4-character message when an IODP(189)
instruction is executed in the program for that Unit. The display mode of the des-

30

PC Configuration

Section 2-7

Display Mode 4

tination unit can be changed to mode 3 automatically by the instruction. Refer to
Section 5 Instruction Set for details on IODP(189).

Mode 4 is not being used currently. In mode 4, the display will show only the deci-
mal point indicating it is in mode 4.

2-6 Peripheral Devices

Connecting Peripheral
Devices

Note

A total of four Peripheral Devices can be connected to a CV-series PC, as shown
in the following table. Only one Peripheral Device can be connected to the CPU
or an I/O Interface Unit.

If a Peripheral Device is connected to the CPU or an I/O Interface Unit, 3 more
Peripheral Devices can be connected to SYSMAC BUS/2 Remote I/O Slave
Units. If no Peripheral Devices are connected to the CPU or I/O Interface Unit, 4
Peripheral Devices can be connected to SYSMAC BUS/2 Remote I/O Slave
Units. Up to 2 Peripheral Devices can be connected to Remote I/O Slaves under
a single Remote I/O Master Unit.

Connecting Unit Max. connection combinations
CPU 1 0 0
1/0 Interface Unit 0 1 0
SYSMAC BUS/2 Remote I/O Slave 3 3 4
Units

Peripheral Devices can be connected even when the PC is ON. Insert the cable
connector until it locks. Using pins 1 and 2 on the CPU DIP switch, set the baud
rate to 50,000 bps for the Graphic Programming Console or Programming Con-
sole or to 9,600 bps for a computer running the CV Support Software.

If the ERROR indicator lights when the PC is turned ON, find the source of the
error by displaying error messages at the terminal. For a memory error, perform
the memory clear or program transfer operation online from the CVSS/SSS and
then clear the error. If a memory error cannot be cleared, there might be a hard-
ware problem in the CPU.

1. I/O tables cannot be created or edited and broadcast testing is not possible
for SYSMAC LINK Systems if the Peripheral Device is connected to a Slave
in a SYSMAC BUS/2 Remote I/0O System.

2. Refer to Appendix A Standard Models in the CV-series PC Installation
Guide for a list of available Peripheral Devices.

2-7 PC Configuration

CPU Racks

The following is an overview of the PC configuration. Refer to the CV-series PC
Installation Guide for details.

The basic PC configuration consists of three types of Rack: a CPU Rack, an Ex-
pansion CPU Rack, and one or more Expansion I/O Racks. The Expansion CPU
Rack and Expansion 1/0O Racks are not a required part of the basic system.
An Expansion CPU Rack is used when the CPU Rack cannot accommodate the
required number of CPU Bus Units (SYSMAC BUS/2 Remote I/O Master Units,
BASIC Units, SYSMAC NET Link Units, and SYSMAC LINK Units). Expansion
I/O Racks are used to increase the number of I/O points, but do not support CPU
Bus Units. An illustration of these Racks is provided in 3-3-1 I/O Area.

An Expansion CPU Rack cannot be connected to a CVYM1-BC103/053 Back-
plane.

A fourth type of Rack, called a Slave Rack, can be used when the PC is provided
with a SYSMAC BUS or SYSMAC BUS/2 Remote I/0O System.

A CPU Rack consists of four components: (1) The CPU Backplane, to which the
CPU, the Power Supply, and other Units are mounted. (2) The CPU, which

31

PC Configuration

Section 2-7

Expansion CPU Racks

Expansion 1/0O Racks

Setting Rack Numbers

32

Note

Note

executes the program and controls the PC. (3) Other Units, such as 1/0 Units,
Special I/O Units, and Link Units, which provide the physical I/O terminals corre-
sponding to I/0O points. (4) The 1/O Control Unit which provides connections to an
Expansion CPU Rack and Expansion I/O Racks. The 1/O Control Unit is not re-
quired if an Expansion CPU Rack and Expansion I/O Racks are not connected
and connect be mounted to CVM1-BC103/053 Backplanes. (5) The Power Sup-
ply, which provides power to the CPU Rack.

A CPU Rack can be used alone or it can be connected to other Racks to provide
additional I/O points. The CPU Backplane provides slots to which other Units
can be mounted. Depending on the model of Backplane used, either three, five,
or ten slots are available for other Units.

An Expansion CPU Rack Consists of an Expansion CPU Backplane, a Power
Supply, and an I/O Interface Unit to connect to the CPU Rack. Eleven slots are
available for other Units. Up to 16 CPU Bus Units can be connected to the CPU
Rack and Expansion CPU Rack. Expansion 1/O Racks can be connected to the
Expansion CPU Rack.

An Expansion CPU Rack cannot be connected to a CYM1-BC103/053 Back-
plane.

An Expansion 1/0O Rack can be thought of as an extension of the PC because it
provides additional slots to which other Units (except CPU Bus Units) can be
mounted. It is built onto an Expansion I/O Backplane to which a Power Supply
and other Units are mounted. Depending on the model of Backplane used, either
four, six, or 11 slots are available for other Units.

An 1/O Interface Unit is also mounted to any Expansion I/O Rack to interface the
Rack to the CPU or Expansion CPU Rack. Also, an I/O Control Unit must be
mounted to any CPU Rack to which more than one Expansion 1/0O Rack is
mounted. If only one Expansion I/0O Rack and no Expansion CPU Rack is con-
nected, the I/O Interface and I/O Control Units are not required and the Expan-
sion I/O Rack can be connected directly to the CPU Rack.

An Expansion I/O Rack is always connected to the CPU via the connectors on
the Backplanes, allowing communication between the two Racks. With C-series
Expansion I/O Racks, up to seven Expansion I/O Racks can be connected in
series to the CPU Rack. With CV-series Expansion I/O Racks, up to seven Ex-
pansion I/O Racks can be connected to the CPU Rack in two series. If an Expan-
sion CPU Rack is used, only six Expansion 1/O Racks can be connected.

Only one Expansion /O Rack cannot be connected to a CYM1-BC103/053
Backplane.

I/O words are allocated to Units mounted on the CPU, Expansion CPU, and Ex-
pansion I/O Racks by rack number, regardless of the order in which the Racks
are connected. The CPU Rack number is fixed at 0, so I/O bits are always allo-
cated first to Units on the CPU Rack. Never set the rack number of an Expansion
CPU or Expansion I/0 Rack to 0.

The PC Setup can be used to control I/0 word allocation to Racks and override
allocation by rack number. Refer to Section 7 PC Setup for details.

The rack numbers for Expansion CPU and Expansion I/O Racks are set with the
rack number switch (RACK No.) on the I/O Interface Unit mounted on the Rack.
Set the rack number with a standard screwdriver after turning off the Rack power
supply and be careful not to damage the switch groove.

1. A duplication error will occur if 2 or more Racks have the same rack number.

2. If arack number is set to 8 or 9, the Rack will not be recognized by the CPU.

3. If a single Expansion I/O Rack is connected to a CPU Rack, an I/O Interface
Unit is not required and the rack number of Expansion I/O Rack is fixed at 1.

4. When mounting an Interrupt Input Unit to an Expansion CPU Rack, always
set the rack number of the Expansion CPU Rack to 1.

SECTION 3
Memory Areas

This section describes the way in which PC memory is broken into various areas used for different purposes. The contents of
each area and addressing conventions, including the use of indirect addressing and addressing registers, are also describe

3-1
3-2
3-3

3-4
3-5

INtrOdUCHION . . . oo 35
Data Area STrUCKUIEo e e e 36
ClO (Core /O) Areao e e e e e e e e e 40
3-3-1 O ArCa . . oo 41
3-3-2 WOIK ArBaS . . . 45
3-3-3 SYSMAC BUS/2 Ar€a ottt e 46
3-3-4 LINK ArEa . . o oo 46
3-3-5 Holding Area.o a7
3-3-6 CPUBUSUNILAIEA . ..ottt 47
3-3-7 CompoBUS/D Areas oot a7
3-3-8 SYSMAC BUS Ar€a. . . .ttt i ittt e 48
TR (Temporary Relay) Area.o e e 48
CPUBUS LINK Area. e 49
AUXIlIArY Ara o 50
3-6-1 Restart Continuation Bit. 54
3-6-2 IOMHOIA Bit . ..o 54
3-6-3 Forced Status HOId Bit. 55
3-6-4 ErorLog Reset Bit. e 55
3-6-5 OUtPULt OFF Bit . . . oo e 55
3-6-6 CPUBuUsUnitRestart Bits. e e 55
3-6-7 SYSMAC BUS Error Check Bits. e 55
3-6-8 Momentary Power Interruption Time 55
3-6-9 CVSS/SSS Flags . . . o oottt 56
3-6-10 Start-Uup TimMe.ttt e e 56
3-6-11 Power Interruption TIMe e 56
3-6-12 Number of Power Interruptions. i 57
3-6-13 Service Disable BitS. 57
3-6-14 Message Flags oo 57
3-6-15 ErrOr LOg ArCa . . .o ottt 57
3-6-16 CPU Bus Unit Initializing Flags. o 58
3-6-17 Wait Flags o oo 58
3-6-18 Peripheral Device Flags. i 59
3-6-19 CPUBus UnitService Interval 59
3-6-20 Memory Card Flags. e 59
3-6-21 EIrOr COUE. . . ottt 60
3-6-22 FALS Flago 60
3-6-23 SFC Fatal Error Flagand ErrorCode 60
3-6-24 CycleTimeToolLong Flag e 60
3-6-25 Program Error Flag.o 60
3-6-26 /O Setting Error Flag. 60
3-6-27 TooManyl/OPointsFlag. e 60
3-6-28 CPUBusErrorandUnitFlags. i 61
3-6-29 Duplication Error Flag and Duplicate Rack/CPU Bus Unit Numbers 61
3-6-30 1/0 Bus Error Flag and I/O Bus Error Slot/Rack Numbers. 61
3-6-31 Memory Error Flag.o e 61
3-6-32 Power Interruption Flag. 61

33

34

3-6-33 CPU Bus Unit Setting Error Flag and Unit Numhber. 61

3-6-34 Battery Low Flags.o e 62
3-6-35 SYSMAC BUS Error Flag, Check Bits, and Master/Unit Numbers. 62
3-6-36 SYSMAC BUS/2 Error Flag and Master/Unit Numbers. 62
3-6-37 CPU Bus Unit Error Flag and Unit Numbers. 63
3-6-38 /O Verification Error Flago 63
3-6-39 SFC Non-fatal Error Flag and Error Code. 63
3-6-40 Indirect DM BCDErrorFlag. i 63
3-6-41 Jump Error Flago 63
3-6-42 FALFlagand FALNumber. e e 63
3-6-43 Memory Error Area LOCation. e 64
3-6-44 Memory Card Start-up Transfer Error Flag. 64
3-6-45 CPU-recognized Rack Numbers 64
3-6-46 CPU Bus Unit Number Setting Error Flag. 64
3-6-47 CPUBUSLINKErOrFlag. e e e 64
3-6-48 Maximum Cycle TiMe e 64
3-6-49 Present Cycle TIme e 64
3-6-50 Instruction Execution Error Flag, ER. 64
3-6-51 Arithmetic Flags 65
3-6-52 Step Flag.o o 65
3-6-53 FirstCycle Flag. 65
3-6-54 Clock Pulse Bits e 66
3-6-55 Network Status Flags. e 66
3-6-56 EM Status Flags.o oo 66

3-7 TraNnSItioN ArCa . . . ot 66

3-8 SHEP Ara. . . . 67

3-9 TMEr Al . . o ottt 67

3-10 COUNTEI AlBA. . . . ottt e 68

3-11 DM and EM ArEaS. oottt 68

3-12 Index and Data Registers (IRand DR) e 70

Introduction Section 3-1
3-1 Introduction
Various types of data are required to achieve effective and correct control. To
facilitate managing this data, the PC is provided with various memory areas
for data, each of which performs a different function. The areas generally ac-
cessible by the user for use in programming are classified as data areas .
Detalils, including the name, range, and function of each area are summa-
rized in the following table. The PC memory addresses are shown in paren-
theses. These memory address are used for indirect addressing. Refer to
3-11 DM and EM Areas and to 5-3 Data Areas, Definers, and Flags for de-
tails on indirect addressing.
Area PC Range Function
CIO Area | All Words: CIO 0000 to CIO 2555 The CIO (Core 1/O) Area is divided into
(Core 1/0) Bits: CIO 000000 to CIO 255515 | eight sections, five controlling I/O and three
($0000 to $09FB) used to store and manipulate data
internally.
Refer to 3-3 CIO (Core 1/0O) Area for detalils.
Temporary | All TRO to TR7 (bits only) Used to temporarily store execution
Relay Area ($09FF) conditions. TR bits are not input when
programming directly in ladder diagrams,
and are used only when programming in
mnemonic form.
CPU Bus All Words: G000 to G255 G000 is the PC Status Area; G001 to G004,
Link Area Bits: G00000 to G25515 the Clock Area. G008 to G127 contain PC
($0A00 to $0AFF) output bits; G128 to G255, CPU Bus Unit
output bits.
Auxiliary All Words: A000 to A511 Contains flags and bits with special
Area Bits: A00000 to A51115 functions.
($0B00 to $0CFF)
Transition | CV500 TNOOOO to TNO511 Transition Flags for the transitions in the
Area ($0D00 to $0D1F) SFC program.
CV1000/CV2000 TNOOOO to TN1023 ($0D00 to $0D3F)
Step Area | CV500 STO0000 to ST0511 ($0EOO to $0ELF) | Step Flags for steps in the SFC program. A
CV1000/CV2000 | STO00O to ST1023 ($0E00 to $OE3F) | Step is active when its flag is ON.
Timer Area | CV500/ TOO00O0 to TO511 Used to define timers (normal, high-speed,
CVM1-CPUO1-EV2 | (Completion Flags: $0F00 to $0F1F and totalizing) and to access Completion
Present Values: $1000 to $11FF) Flags, PV, and SV.
CV1000/CV2000/ TO0O0O0 to T1023
CVM1-CPU11-EV2 | (Completion Flags: $0F00 to $0F3F
CVM1-CPU21-EV2 | Present Values: $1000 to $13FF)
Counter CV500/ C0000 to C0511 Used to define counters (normal, reversible,
Area CVM1-CPUO1-EV2 | (Completion Flags: $0F80 to $0F9F and transition) and to access Completion
Present Values: ~ $1800 to $19FF) | Flags, PV, and SV.
CV1000/CV2000/ C0000 to C1023
CVM1-CPU11-EV2 | (Completion Flags: $0F80 to $0FBF
CVM1-CPU21-EV2 | Present Values: $1800 to $1BFF)
DM Area CVv500/ D00000 to D08191 ($2000 to $3FFF) | Used for internal data storage and
CVM1-CPUO1-EV2 manipulation.
CV1000/CV2000/ D00000 to D24575 ($2000 to $7FFF)
CVM1-CPU11-EV2
CVM1-CPU21-EV2
EM Area CV1000/CV2000 EO00000 to E32765 for each bank; 2, EM functions just like DM. An Extended
CVM1-CPU21-EV2 | 4, or 8 banks ($8000 to $8FFD) Data Memory Unit must be installed.
Index All IRO to IR2 Used for indirect addressing.
registers
Data All DRO to DR2 Generally used for indirect addressing.
registers

35

Data Area Structure

Section 3-2

Flags and Control Bits

Some data areas contain flags and/or control bits. Flags are bits that are au-
tomatically turned ON and OFF to indicate particular operation status. Al-
though some flags (e.g., the Carry Flag) can be turned ON and OFF by the
user, most flags are read only; they cannot be controlled directly.

Control bits are bits turned ON and OFF by the user to control specific as-
pects of operation. Any bit given a name using the word bit rather than the
word flag is a control bit, e.g., Restart Bits are control bits.

3-2 Data Area Structure

Addresses

Word Structure

Bit number

There are two different sets of addresses that can be used to access PC
memory: data area addresses or memory addresses. Data area addresses are
used when specifying an address directly as an operand for an instruction.
Memory addresses are used when using indirect addressing.

When designating a data area address, the acronym for the area (the let-
ter(s) identifying the data area) is always required for any area except the
CIO (Core I/0) Area. Although the CIO acronym is given for clarity in text ex-
planations, it is not required and not entered when programming.

It is possible also to access any memory location through its hexadecimal PC
memory address with indirect addressing. Refer to 3-11 DM and EM Areas,
and 3-12 IR and DR Areas, for details on indirect addressing.

Memory areas are divided up into words, each of which consists of 16 bits num-
bered 00 through 15 from right (least significant) to left (most significant). CIO
words 0000 and 0001 are shown below with bit numbers. Here, the content of
each word is shown as all zeros. Bit 00 is called the rightmost bit; bit 15, the left-
most bit.

The term least significant bit is often used for rightmost bit; the term most
significant bit, for leftmost bit.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 OO0

clowordoooo [0 o |[oJo[o]Jofo|[]o]Jof[o]Jo[o]o]Jo|[o]of

clowordoool [0 | o|[o]Jof[o]ofo|lo]J]o[o]o[o]o]o|[o] o]

36

Data in the DM Area and EM Area, as well as Timer and Counter PVs can be
accessed as words only. Transition Flags, Step Flags, and Timer and Count-
er Completion Flags can be accessed as bits only. You cannot designate any
of these for operands requiring bit data. Data in the CIO, CPU Bus Link, and
Auxiliary Areas is accessible either by word or by bit, depending on the
instruction in which the data is being used.

To designate one of these areas by word, all that is necessary is the acro-
nym, if required, and the two-, three-, or four-digit word address. To desig-
nate an area by bit, the word address is combined with the bit number as a
single four- to six-digit address. The following table shows examples of this.
The two rightmost digits of a bit address must indicate a bit between 00 and
15, e.g., the rightmost digit must be 5 or less when the next digit to the left
is 1.

Data Area Structure

Section 3-2

Data Structure

Digit number

Bit number

Contents

Converting Different Forms
of Data

The same timer and counter numbers can be used to designate either the
present value (PV) of the timer or counter, or the Completion Flag for the tim-
er or counter. This is explained in more detail in 3-9 Timer Area and 3-10
Counter Area.

Area Word designation Bit designation

CIO 0000 000015 (leftmost bit in word CIO 0000)
CIO 0252 025200 (rightmost bit in word CIO 0252)
DM D01250 Not possible

T T215 (designates PV) T215 (designates Completion Flag)

A A012 A01200

To designate a word by its PC Memory address, write the hexadecimal ad-
dress to an Index Register, DM, or EM word and indirectly address the oper-
and through that register or word. Refer to 3-11 DM and EM Areas and 3-12
IR and DR Areas for details on indirect addressing.

Word data input as decimal values is stored in binary-coded decimal (BCD);
word data entered as hexadecimal is stored in binary form. Each four bits of
a word represent one digit, either a hexadecimal or decimal digit, numerically
equivalent to the value of the binary bits. One word of data thus contains four
digits, which are numbered from right to left. These digit numbers and the
corresponding bit numbers for one word are shown below.

3 2 1 0

15 14 13 12

Ill 10 09 08|O7 06 05 O4|03 02 01 OOI

[oJoJofofJoJoJoJofofjofJoJoJojofofol]

When referring to the entire word, the digit numbered 0 is called the right-
most digit; the one numbered 3, the leftmost digit.

When inputting data, it must be input in the proper form for the intended pur-
pose. This is no problem when designating bits, which are turned ON (equiv-
alent to a binary value of 1) or OFF (a binary value of 0). When inputting
word data, however, it is important to input it either as decimal or as hexade-
cimal, depending on what is called for by the instruction it is to be used for.
Section 5 Instruction Set specifies when a particular form of data is required
for an instruction.

Binary and hexadecimal can be easily converted back and forth because
each four bits of a binary number is numerically equivalent to one digit of a
hexadecimal number. The binary number 0101111101011111 is converted to
hexadecimal by considering each set of four bits in order from the right.
Binary 1111 is hexadecimal F; binary 0101 is hexadecimal 5. The hexadeci-
mal equivalent would thus be 5F5F, or 24,415 in decimal (163 x 5 + 162 x 15
+16 x5 + 15).

Decimal and BCD are easily converted back and forth. In this case, each
BCD digit (i.e., each group of four BCD bits) is numerically equivalent to the
corresponding decimal digit. The BCD bits 0101011101010111 are converted
to decimal by considering each four bits from the right. Binary 0101 is deci-
mal 5; binary 0111 is decimal 7. The decimal equivalent would thus be 5,757.
Note that this is not the same numeric value as the hexadecimal equivalent
of 0101011101010111, which would be 5,757 hexadecimal, or 22,359 in deci-
mal (163 x5+ 162x7 + 16 x5 + 7).

37

Data Area Structure

Section 3-2

Decimal Points

Because the numeric equivalent of each four BCD binary bits must be nu-
merically equivalent to a decimal value, any four bit combination numerically
greater than 9 cannot be used, e.g., 1011 is not allowed because it is numeri-
cally equivalent to 11, which cannot be expressed as a single digit in decimal
notation. The binary bits 1011 are of course allowed in hexadecimal and are
equivalent to the hexadecimal digit B.

There are instructions provided to convert data between BCD and hexadeci-
mal. Refer to 5-15 Data Conversion for details. Tables of binary equivalents
to hexadecimal and BCD digits are provided in the appendices for reference.

Decimal points are used in timers only. The least significant digit represents
tenths of a second. All arithmetic instructions operate on integers only. When
inputting data for use by Special I/O Units or other special applications, be
sure to check on the type of data required for the application.

Signed and Unsigned Data

Unsigned binary

Digit value

Bit number

Contents

Signed Binary

38

Sign indicator
Digit value

Bit number

Contents

This section explains signed and unsigned binary data formats. Three instruc-
tions, MAX(165), MIN(166), and SUM(167), can use either signed or unsigned
data.

Unsigned binary is the standard format used in OMRON PCs. Data in this manu-
al are unsigned unless otherwise stated. Unsigned binary values are always
positive and range from 0 ($0000) to 65,535 ($FFFF). Eight-digit values range
from 0 ($0000 0000) to 4,294,967,295 ($FFFF FFFF).

163 162 161 169

15

14

11 10 09 08 07 06 05 04 03 02 01 OOI

13 12

[ofofofofJoJoJofJofofjoJoJoJojofoJol]

-

Signed binary data can have either a positive and negative value. The sign is
indicated by the status of bit 15. If bit 15 is OFF, the number is positive and if bit 15
is ON, the number is negative. Positive signed binary values range from 0
($0000) to 32,767 ($7FFF), and negative signed binary values range from
—32,768 ($8000) to —1 ($FFFF).

163 162 161 160

15

14

13 12|11 10 09 08|07 06 05 04|03 02 01 OO|

[ofofofofJoJoJofofofjoJoJoJojofoJol]

Eight-digit positive values range from 0 ($0000 0000) to 2,147,483,647 ($7FFF
FFFF), and eight-digit negative values range from —2,147,483,648 ($8000
0000) to -1 ($FFFF FFFF).

Data Area Structure Section 3-2

Converting Decimal to Positive signed binary data is identical to unsigned binary data (up to 32,767)

Signed Binary

Bit number

Contents

Bit number

Contents

Bit number

Contents

and can be converted using BIN(100). The following procedure converts nega-
tive decimal values between —32,768 and —1 to signed binary. In this example
—12345 is converted to CFC7.

1. First take the absolute value (12345) and convert to unsigned binary:

15 14 13 12|11 10 09 08|O7 06 05 O4|03 02 01 00|

[oJoJifafofJoJoJoJofjofJi1JiJaJofofr1]

2. Next take the complement:

15 14 13 12|11 10 09 08|O7 06 05 04|03 02 01 00

[t]1fofofrfrJafafafrfofJoJoJa]1]ol]

3. Finally add one:

|15 14 13 12|11 10 09 08 07 06 05 04 03 02 01 00

[t]1fofofrfrJafafafrfofJoJoJa]1]1]

Reverse the procedure to convert negative signed binary data to decimal.

39

CIO (Core I/0O) Area

Section 3-3

3-3 CIO (Core I/O) Area

CIO Area addresses run from words CIO 0000 through CIO 2555 and bits
CI10 000000 through CIO 255515 and are divided into eight data areas. Five
of these data areas are used to control I/O points and Special Units, and
three data areas are used to manipulate and store data internally. The CIO
Area is accessible either by bit or by word. No prefix is required when input-
ting data area addresses; the CIO prefix is used only for clarity in descrip-

tions.

The name, range, and function of each data area within the CIO Area are sum-
marized in the following table. PC memory addresses are in parentheses.

Area PC Range Function
1/0 Area CV500 Words: CIO 0000 to CIO 0031 Allocated to I/O in the System and used to
CVM1-CPUO1-EV2 | Bits: CIO 000000 to CIO 003115 | control I/O points. Bits not used to control
($0000 to $001F) 1/0 points can be used as work bits. The PC
CV1000 Words: CIO 0000 to CIO 0063 Setup can be used to control allocations.
CVM1-CPU11-EV2 | Bits: ClO 000000 to CIO 006315 | Once I/O table has been registered, input
($0000 to $003F) bits are displayed on CVSS/SSS with an I,
CV2000 Words: CIO 0000 to CIO 0127 output bits, with a Q.
CVM1-CPU21-EV2 | Bits: CIO 000000 to CIO 012715
($0000 to $007F)
Work Area | CV500 Words: CIO 0032 to CIO 0199 These bits are used in the program to
CVM1-CPUO1-EV2 | Bits: CIO 003200 to CIO 019915 | manipulate or to temporarily store data.
($0020 to $00C7)
CVv1000 Words: CIO 0064 to CIO 0199
CVM1-CPU11-EV2 | Bits: CIO 006400 to CIO 019915
($0040 to $00C7)
CV2000 Words: CIO 0128 to CIO 0199
CVM1-CPU21-EV2 | Bits: CIO 012800 to CIO 019915
($0080 to $00C7)
SYSMAC | CVv500/ Words: CIO 0200 to CIO 0599 These bits are used for remote 1/O points in
BUS/2 CVM1-CPUO1-EV2 | Bits: CIO 020000 to CIO 059915 | the SYSMAC BUS/2 Remote I/O System
Area ($00C8 to $0257) unless the default allocations are changed in
the PC Setup.
CV1000/CV2000/ | Words: CIO 0200 to CIO 0999 Bits not used to control 1/0 points can be
CVM1-CPU11-EV2 | Bits: CIO 020000 to CIO 099915 | used as work bits.
($00C8 to $03E7)
Link Area | All Words: CIO 1000 to CIO 1199 These bits are used for SYSMAC NET Link
Bits: CIO 100000 to CIO 119915 | and SYSMAC LINK Systems. Bits not used
($03E8 to $04AF) for data links can be used as work bits.
These bits can be set as holding bits via PC
Setup.
Holding All Words: CIO 1200 to CIO 1499 Used to store data and to retain the data
Area Bits: CIO 120000 to CIO 149915 | values when the power is turned off.
($04B0 to $05DB)
CPU Bus All Words: CIO 1500 to CIO 1899 Used to store the operating status of CPU
Unit Area Bits: CIO 150000 to CIO 189915 | Bus Units. Bits not used by CPU Bus Units
($05DC to $076B) can be used as work bits. These bits can be
set as holding bits via the PC Setup.
CompoBus | All Words: CIO 1900 to CIO 1963 These bits are used in CompoBus/D
/D Areas Bits: CIO 190000 to CIO 196315 | networks. Bits not used for CompoBus/D
($076C to $0AB) can be used as work bits.
Words: CIO 2000 to CIO 2063
Bits: CIO 200000 to CIO 206315
($07DO0 to $080F)

40

CIO (Core I/0O) Area Section 3-3
Area PC Range Function
Work All Words: CIO 1964 to CIO 1999 These bits are used in the program to
Areas Bits: CIO 196400 to CIO 199915 | manipulate or to temporarily store data.
($07AC to $07CF) These bits can be set as holding bits via the
Words: CIO 2064 to CIO 2299 PC Setup.
Bits: CIO 206400 to CIO 229915
($0810 to $08FB)
SYSMAC | CV500 Words: CIO 2300 to CIO 2427 These bits are used for remote 1/O points in
BUS Area | CVM1-CPUO1-EV2 | Bits: CIO 230000 to CIO 242715 |the SYSMAC BUS Remote I/0 System
($08FC to $097B) unless the default allocations are changed in
the PC Setup.
CV1000/CV2000 Words: CIO 2300 to CIO 2555 Bits not used to control 1/0O points can be
CVM1-CPU11-EV2 | Bits: CIO 230000 to CIO 255515 | used as work bits. Up to word 2399 can be
CVM1-CPU21-EV2 | ($08FC to $09FB) set as holding bits via the PC Setup.
3-3-1 1/O Area
The I/O Area is used as data to control I/O points.Those words that are used to
control I/O points are called 1/0 words. Bits in 1/0O words are called I/O bits. I/O
Area bits that are not allocated as 1/O bits are reset when power is interrupted or
PC operation is stopped. The number of I/0O words varies between the PCs as
shown in the following table.
PC 1/0 words 1/0 bits
CVv500/ Cl0O 0000 to CIO 0031 C10 000000 to CIO 003115
CVM1-CPUO1-EV2
CV1000/ C10O 0000 to CIO 0063 C10 000000 to CIO 006315
CVM1-CPU11-EV2
CVv2000 ClO 0000 to CIO 0127 CI10O 000000 to CIO 012715
CVM1-CPU21-EV2
I/O Words The maximum number of 1/O bits is 16 (bits/word) times the number of I/O

Input Bit Usage

Output Bit Usage

words, i.e., 512 bits for the CV500 or CVM1-CPUO1-EV2; 1,024 for the
CV1000 or CVM1-CPU11-EV2; and 2,048 for the CV2000 or
CVM1-CPU21-EV2. I/O bits are assigned to input or output points on Units
connected at various locations in the PC System, as described later in this
section (see Word Allocations).

If an 1/0 point on a Unit brings an input into the PC, the bit assigned to it is an
input bit; if the point sends an output from the PC, the bit assigned to it is an
output bit. To turn ON an output, the output bit assigned to it must be turned
ON from the program or from a Peripheral Device. When an input turns ON,
the input bit assigned to it also turns ON and the status of the input can be
accessed indirectly by reading the status of the input bit assigned to it. Input
status and control output status is thus manipulated through 1/O bits.

After the 1/0O Table has been registered (see Word Allocations, below), an “I” will
appear before input bit addresses and a “Q” will appear before output bit ad-
dresses on CVSS/SSS (CV Support Software/SYSMAC Support Software) dis-
plays.

I/O bits that are not assigned to 1/O points can be used as work bits.

Input bits record external signals input to the PC and can be used in any or-
der in programming. Each input bit can also be used in as many instructions
as required to achieve effective and proper control. They cannot be used as
operands in instructions that control bit status, e.g., the OUTPUT, DIFFER-
ENTIATE UP, and KEEP instructions. In other words, input bits should be
treated as read-only bits.

Output bits are used to output program execution results and can be used in
any order in programming. Generally speaking, any one output bit should be

41

CIO (Core I/0O) Area

Section 3-3

Word Allocations

42

used in only one instruction that controls its status, including OUT, KEEP(11),
DIFU(13), DIFD(14), and SFT(10). If an output bit is used in more than one
such instruction, only the status determined by the last instruction will actual-
ly be output from the PC during the normal I/O refresh period.

If you control the status of an output bit in more than one instruction, be sure
to consider proper output timing and test the program before actual applica-
tion. See 5-14-1 SHIFT REGISTER — SFT(050) for an example that uses an
output bit in two “bit-control” instructions.

I/0 words in the CIO Area are allocated to Units mounted on Racks or other-
wise connected to the PC by performing the 1/0 Table Registration operation.
This operation creates in memory a table called an I/O table that records
what words and how many words are allocated to the Units and whether
these words are input or output words. The actual procedure for this opera-
tion is described in the CVSS/SSS Operation Manuals.

The first word allocated to each Rack can be set with the CVSS/SSS under the
PC Setup. When the I/O Table Registration operation is performed, the system
assigns word addresses to Units in the order in which they are mounted left to
right on each Rack, beginning with the first word set in the PC Setup. The as-
signed words must be between CIO 0000 and CIO 0511.

For any Racks not assigned a first word in the PC Setup menu when the 1/O
Table is registered, the system automatically assigns word addresses to
Units. Word allocation begins with the leftmost Unit on the CPU Rack, and
then continues left to right on the CPU Expansion Rack or Expansion /O
Rack with the lowest rack number set on its I/O Interface Unit. The order in
which the Expansion I/O Racks are connected is not relevant in word alloca-
tion, only the rack numbers. I/O words start from CIO 0000 for the first Unit
on the CPU Rack and continue consecutively: CIO 0001, CIO 0002, etc.

If the lowest word assigned to a Rack in the PC Setup menu is not higher than the
total number of words required by Racks that aren’t assigned a first word, the
same word will be assigned to two Units and a duplication error will occur. A du-
plication error will also occur if words assigned to Racks overlap those assigned
to Units controlled through Remote 1/0O Masters in the SYSMAC BUS/2 Area,
which begins at CIO 0200. Be careful when setting areas from the CVSS/SSS to
avoid overlapping allocations.

There are no specific words associated with any particular slot because dif-
ferent Units can require a different number of words. Rather, each Unit is as-
signed the next word(s) following the word(s) assigned to the previous Unit. If
there are any empty slots, no words will be assigned to those slots. Words
are only assigned when a Unit is mounted; all empty slots are skipped. The
numbers of I/O words allocated to the most common types of Unit are shown
below.

Unit Words required
16-pt 1/O Units 1 word
24- or 32-pt I/O Units 2 words
64-pt 1/0 Units 4 words
Interrupt Input Unit 1 word
Dummy 1/O Unit Set to 1, 2, or 4 words
Analog I/0O Units 2 or 4 words

High-speed Counter Units

CT012/CT041: 2 words
CT021: 2 or 4 words

MCR Units (See note 1)

4 words

PID Unit (See notes 1 and 2)

4 words

CIO (Core I/O) Area Section 3-3
Unit Words required
Position Control Units (See note 2) NC111/NC103/NC112/NC121: 4 words
NC222: 2 words
1/O Interface Unit None
Cam Positioner 2 or 4 words
Ladder Program I/O Unit 2 words
ASCII Unit (ASCO03 not applicable; use 2 or 4 words
ASCO04.)
SYSMAC NET Link Unit None (assigned CIO Link Area words)
SYSMAC LINK Unit None (assigned CIO Link Area words)
SYSMAC BUS/2 Remote I/0O Master Unit | None (See note 1)
CompoBus/D Master Unit None
BASIC Unit None
Personal Computer Unit None (See note 3)
Motion Control Units None
Temperature Control Data Link Unit None
Ethernet Unit None
Remote I/O Master Unit None (See note 4)
Remote I/O Slave Unit None (See note 4)
1/0 Link Unit 1 or 2 words (See note 5)
1/O Control Unit None
Note 1. PID Units, Magnetic Card Reader Units, Fuzzy Logic Units, and Cam Posi-

w

tion Units cannot be mounted to Slave Racks in SYSMAC BUS/2 Systems.

. The PID Unit and some Position Control Units require two slots on a Rack.
. The Personal Computer Unit requires four slots on a Rack.
. Although no words are allocated to the Remote I/O Master and Slave Units

themselves, words are allocated to Units mounted to Slave Racks or other-
wise connected to the Remote 1/0O System. Refer to 3-3-3 SYSMAC BUS/2
Area and 3-3-8 SYSMAC BUS Area, for details.

. 3G2A5-LK010-E I/O Link Units and C500-ETLO1 Teaching Tool cannot be

set to 16 point input/16 point output on a CV-series PC.

. The I/O READ and I/0O WRITE instructions (READ(190)/WRIT(191)) can be

used for Units mounted to Slave Racks in SYSMAC BUS/2 Systems (but not
in SYSMAC BUS Systems) under the following conditions.

a) The lot number of the Remote I/O Master Unit and Remote 1/O Slave Unit
must be the same as or latter than the following.

I -F_’ 1992
October (Y: November; Z: December)

1st

b) The DIP switch on the Remote I/O Slave Unit must be set to “54MH.”

c) The Special 1/0 Unit must be one of the following: AD101, CT012,
CT041, ASC04, IDS01-V1, IDS02, IDS21, IDS22, LDP01-V1, or NC222.

. Refer to the CV-series PC Installation Guide or to the operation manuals for

individual Units for specific mounting procedures and limitations.

Once the word(s) assigned to a Unit has been determined, the use of individ-

ual bits in the word(s) is determined by the type of Unit. If the Unit is a Spe-
cial I/O Unit, I/O Link Unit, or CPU Bus Unit, each bit will have a dedicated
function. Refer to the Operation Manuals for the relevant Units for detalils.

With 1/O Units, bits within a word are assigned to terminals starting at the top
of the I/O Unit with bit 00 and going sequentially to the bottom. If the first Unit

43

CIO (Core I/0O) Area Section 3-3

on the left of the CPU Rack is an Input Unit, the top terminals (i.e., the top
input point) will be assigned CIO 000000, the next terminals, CIO 000001,
and so forth for all of the terminals on the Unit. The allocation order is illus-
trated below. Arrows indicate the order in which words are allocated to Units
for the rack number settings indicated.

Basic I/O Allocation I/O Word Allocation Example
Starting point
CPU Rack CPU Rack
AR IR ER RN = ™ o =
Rl 1 1 1 1 1 1 1 1 1 < - o o <
E 1 1 1 1 1 1 1 1 1 D E 8 8 D
=) 1 1 1 1 1 i 1 g g Z‘ =) o o Z
Slilylflyl g S & & g
c 3 clo|ld|lu|t|w|lol~|o|o|w 2
) 111 n olS|o|lolo|o|lo|olo|d|d n
Q [l i ' ' ' ' ' - Olo|o|lo|o|lo|lo|lo|lo|o|o —
o ' f f ' ' ' f f ') o [} o) fol No) o) ol ol o) foh o) [}
=3 BRI I B O I D N e E% :99999999992%
ol& o|lo|o|o|o|o|o|o|o|o] 5| &
‘__—"‘— F=-=-=-=-=-=-=-=-=-=-=-==-=-=---
-7 Expansion CPU Rack Y Expansion I/O Rack
e /!-:\ =
- ' ' ' ’ ' ' ' ' c =|lm o S i=
c 1 1 1 , 1 1 1 1 =) c 5' 8 ‘(_5‘ S
-] 1 ' ' ' ' [[) o o Q
@ ERERD)/ ERINAN! E gl - S %
g ' ' ' % ‘g % % g %
g : ® gla| 32125123212 |88 @
= [[, ! ! ! ! — =llelelelelelel2 22 —_
o | | , 1R RO R o ol2l212]12(21212(2]g]2]2 o
=1l 2 =4 [e] [o] [e] o] [e] o] (o] ko] §4 [} (o} NN
& o|o|o|o|o|o|o|o|u|lo|o] 8
Rack #1
Rack #1 Empty slots or Units not rh------] Expansion I/0O Rack
requiring word allocation ' '
(no words allocated) ! - X
| = c !
| S -} l
' © > !
: g gl
, old|la|lo|lt|lv]lo|ln]lo]lololo 2 '
2lo|o|o||e|R2I|X (%)) ,
! =N =l o) jol o] fo} o} o) fo} o) o) N —
, o S|o|o|o|o|o|o|o]|o|o]o o !
' =4 [} [o] [e] o] [e] o] (o] o] [o] e} (o} N3y I
' o|o|o|o|olo|o|o|o|o|o| &] .
1
! 1
' Rack #3 I I - -
: rocco--- Expansion 1/0 Rack
1
' Tl =
! = elelele c
' 5 B|RB|IS|R] O
1 oOjo]l o] o >
. @ SlelelLel =2
. 8 B E E S
[} =k el o] >
B HEEEHEHEEEEEK:
' 6 =1k=1k=1Rk=1 k=1 k=1 k=) E E E E o
! =3 K] ko] ko] o] Fo} ko] Kol = I3 =3 =y I
, o|o|o|o|o|o|o|u|u|o|u] &
1
b e e e e e e e e e e e e e e - - - '
Rack #2
Rack Changes Once Units have been mounted and the 1/0 Table Registration operation has

been performed, a change to any Unit mounted to a Rack that affects the
type of 1/0 word, or the number of words required by the Unit will cause an
I/O verification error to occur. This includes adding Units to previously un-
used slots or removing Units that have already been allocated word(s). A
Unit can, however, be replaced with another Unit that requires the same
number of input words and the same number of output words without gener-

44

CIO (Core I/0O) Area

Section 3-3

&Caution

Word Reservations

3-3-2 Work Areas

ating an I/O verification error. Dummy 1/O Units are available to fill slots for
future use or to replace Units that are no longer needed (see Word Reserva-
tions, below).

There are two ways, however, to change the 1/O table registered in memory.
One is to allocate words to a slot that is not currently being used. This meth-
od is described below in Word Reservations.

The other way is to perform the I/O Table Registration operation again. When
this is done, all I/0 words will be reallocated according to the Units mounted
to the Racks at the time. If the number of words allocated to any one slot
changes, all word allocations past that slot will also change, requiring that the
program be changed to allow for this.

Sometimes program changes can be avoided when a Unit is removed from a
Rack or you know that you are going to have to add a Unit later by reserving
words. Although designed to enable slot reservations for future use, a slot
reservation can be left permanently to prevent what could be extensive pro-
gram changes.

Always be sure to change word and bit addresses in the program whenever a
change to Units on a Rack affects word allocations. Failure to do so may cause
improper /O operations.

Words can be reserved at a certain slot for future use either by mounting a
Dummy I/O Unit to the slot before performing the 1/0 Table Registration op-
eration or by performing an I/O Table Change operation after performing the
I/O Table Registration operation.

A Dummy I/O Unit provides settings to designate word types (input or output)
and length (one, two, or four words). After I/O Table Generation has been
performed and a Dummy I/O Unit has been allocated the words designated
by these settings, it can be replaced at any time with a Unit that requires the
same type and number of words, e.g., if a Dummy I/O Unit is set for two input
words, it can be replaced with any 24- or 32-point Input Unit or any other Unit
that requires two input words.

Once an 1/O table has been registered, it can be changed using the 1/0 Table
Change operation described in CVSS/SSS Operation Manuals. This opera-
tion can be used to reserve up to four input words, output words, or non-de-
fined words at a time. The 1/0O Table Change operation must be performed
after the 1/0 Table Registration operation. If I/O Table Registration is re-
peated, all word reservations will be cancelled, and I/O Table Change will
have to be repeated.

There are two Work Areas available in PC memory. Words and bits in the Work
Areas can be used in programming as required to control other bits, but are not
used for direct external I/O. Other bits and words in the CIO Area which are not
being used for their intended purpose can also be used as work words and work
bits. Actual application of work bits and work words is described in Section 4
Writing Programs.

45

CIO (Core I/0O) Area Section 3-3

Work words and bits are reset when power is interrupted or PC operation is
stopped, but they are not reset when a FALS error instruction is executed in the

program.
PC Work words Work bits

CV500 ClO 0032 to CIO 0199 ClO 003200 to CIO 019915
CVM1-CPUO1-EV2

CV1000 ClO 0064 to CIO 0199 ClO 006400 to CIO 019915
CVM1-CPU11-EV2

CV2000 ClO 0128 to CIO 0199 ClO 012800 to CIO 019915
CVM1-CPU21-EV2

All ClO 1964 to CIO 1999 ClO 196400 to CIO 199915

ClO 2064 to CIO 2299 ClO 206400 to CIO 229915

3-3-3 SYSMAC BUS/2 Area

I/O bits allocated in the SYSMAC BUS/2 Area correspond to 1/O points on I/O
Terminals (group-1 and group-2 Slaves), Units mounted to Slave Racks
(group-3 Slaves), or other Units connected to SYSMAC BUS/2 Remote I/O Mas-
ter Units (RM/2). Up to four Masters can be connected to the CV1000, CV2000,
CVM1-CPU11-EV2, or CVM1-CPU21-EV2 (RM/2 #0 to RM/2 #3), and up to two
Masters can be connected to the CV500 or CVM1-CPUO1-EV2 (RM/2 #0 and
RM/2 #1). The total number of I/O points required for I/0O Terminals, Units on
Slave Racks, and other Units in the SYSMAC BUS/2 Remote I/O System must
not exceed 2,048 (128 words) for the Cv1000, CV2000, CVM1-CPU11-EV2, or
CVM1-CPU21-EV2, and 1,024 (64 words) for the Cv500 or CVM1-CPUO1-EV2.

SYSMAC BUS/2 Area address allocation can be customized with the PC Set-
up using the CVSS/SSS. The first word allocated to the group-1, group-2,
and group-3 Slaves, as well as the size of each of these areas, can be
changed. The following table shows the default address allocations.

3-3-4 Link Area

46

RM/2 # Group-1 Slaves* Group-2 Slaves* Group-3 Slaves

0 CIlO 0200 to CIO 0249 | CIO 0250 to CIO 0299 | CIO 0300 to CIO 0399
1 CIlO 0400 to CIO 0449 | CIO 0450 to CIO 0499 | CIO 0500 to CIO 0599
2 CIlO 0600 to CIO 0649 | CIO 0650 to CIO 0699 | CIO 0700 to CIO 0799
3 CIlO 0800 to CIO 0849 | CIO 0850 to CIO 0899 | CIO 0900 to CIO 0999

*Group-1 Slaves allocated up to 64 1/0O points. Group-2 Slaves are medium-sized Units
allocated up to 128 I/O points. Group-3 Slaves are used to form Slave Racks.

As with I/O area allocations to CPU, Expansion CPU, and Expansion 1/O
Racks, word allocation begins with the Slaves connected to the Master with
the lowest unit number, RM/2 #0, regardless of the order that the Masters are
mounted. Likewise, word allocation to Units connected to RM/2 #0 begins
with the Slaves that have the lowest unit numbers, regardless of the order
that the Slaves are mounted.

Up to 8 Slave Racks can be connected to each RM/2 Master. Word address-
es are assigned to Units on Slave Racks in the order in which they are
mounted left to right. Refer to the SYSMAC BUS/2 Remote I/O System
Manual for details on word allocation to Slaves and Units on Slave Racks.

After the I/O Table has been registered or edited, an “I” will appear before
input bit addresses and a “Q” will appear before output bit addresses on
CVSS/SSS displays. Refer to the CVSS/SSS Operation Manuals for details
on the PC Setup.

The Link Area is used as a common data area to automatically transfer in-
formation between PCs. This data transfer is achieved through data links in

CIO (Core I/0O) Area

Section 3-3

3-3-5 Holding Area

either a SYSMAC LINK System or a SYSMAC NET Link System. Link Area
addresses run from CIO 1000 through CIO 1199. Link Area words CIO 1000
through CIO 1063 and DM Area words DO0000 through D00127 are auto-
matically used for data link tables unless specific link words are designated.
Allocations can be designated from the CVSS/SSS. Refer to the CVSS/SSS
Operation Manuals, and the SYSMAC LINK System Manual, or SYSMAC
NET Link System Manual for details.

The Holding Area is used to store/manipulate various kinds of data and can
be accessed either by word or by bit. Holding Area bits can be used in any
order required and can be programmed as often as required.

The default Holding Area word addresses range from CIO 1200 through CIO
1499; bit addresses, from CIO 120000 through CIO 149915. The range of the
Holding Area can be changed to any size between CIO 1000 through CIO
2399 with the PC Setup from the CVSS/SSS. If the Holding Area is in-
creased, it will overlap other areas. An “H” will appear before Holding Area bit
addresses on the CVSS/SSS screen. Refer to the CVSS/SSS Operation
Manuals for details.

The Holding Area retains status when the operating mode is changed, power
is interrupted, or PC operation is stopped.

Holding Area bits and words can be used to preserve data whenever PC op-
eration is stopped. Holding bits also have various special applications, such
as creating latching relays with the KEEP instruction and forming self-holding
outputs. These are discussed in Section 4 Writing Programs and Section 5
Instruction Set.

3-3-6 CPU Bus Unit Area

Two types of external bus are provided for CV-series PCs: the high-speed CPU
bus (S Bus) and the I/O bus. Units that connect to the CPU bus on the CPU or
Expansion CPU Rack are called CPU Bus Units and include the SYSMAC NET
Link Unit, SYSMAC LINK Unit, SYSMAC BUS/2 Remote I/0O Master Unit, BASIC
Unit, and Personal Computer Unit.

CPU Bus Unit Area addresses range from CIO 1500 through CIO 1899. These
400 words are divided into 16 groups of 25 words each. These are allocated to
CPU Bus Units according their unit number settings as shown in the following
tables.

Unit # 0 1 2 3 4 5 6 7
ClO 1500 1525 1550 1575 1600 1625 1650 1675
words to to to to to to to to

1524 1549 1574 1599 1624 1649 1674 1699

Unit # 8 9 10 11 12 13 14 15
Clo 1700 1725 1750 1775 1800 1825 1850 1875
words to to to to to to to to

1724 1749 1774 1799 1824 1849 1874 1899

An additional1600 words in the DM Area (D02000 to D03599) are provided for
CPU Bus Units. The particular function of words allocated to the Unit depends on
the CPU Bus Unit being used.

3-3-7 CompoBus/D Areas

I/O bits allocated to CompoBus/D correspond to external I/O points on the de-
vices connected to the CompoBus/D device network. Refer to CompoBus/D
(DeviceNet) Operation Manual (W267) for further information.

a7

TR (Temporary Relay) Area Section 3-4

3-3-8 SYSMAC BUS Area

I/O bits allocated in the SYSMAC BUS Area correspond to external 1/O points on
I/O Terminals, Optical I/O Units, or I/O Units mounted to Slave Racks that are
connected to SYSMAC BUS Remote I/0O Master Units (RM). Up to 8 Masters
can be connected to the CV1000, CV2000, CVM1-CPU11-EV2, or
CVM1-CPU21-EV2, and up to 4 Masters can be connected to the CV500 or
CVM1-CPUO01-EV2. The total number of I/O points in the SYSMAC BUS System
must not exceed 2,048 (128 words) for the CVM1-CPU21-EV2, 1024 (64 words)
for the CV1000, CV2000, or CVM1-CPU11-EV2, and 512 (32 words) for the
CV500 or CVM1-CPUO1-EV2.

Unit numbers are assigned to Masters automatically when the 1/O Table is
registered or edited, according to the order in which the Masters are mounted
(taking into account rack number settings). The first word allocated to each
Master can be changed with the PC Setup using the CVSS/SSS.

SYSMAC BUS Area addresses range from CIO 2300 through CIO 2555. These
256 words are divided into 8 groups of 32 words each and are allocated to Mas-
ters according their number setting. The following table shows the default ad-
dress allocation.

RM # 0 1 2 3 4 5 6 7
Clo 2300 2332 2364 2396 2428 2460 2492 2524

words to to to to to to to to
2331 2363 2395 2427 2459 2491 2523 2555

Words are allocated to Units on Slave Racks in order beginning with the
Slave Rack with the lowest unit number. Up to 8 Slave Racks can be con-
nected to each Master. Word addresses are assigned to Units in the first
Slave Rack in the order in which they are mounted left to right. Word alloca-
tion then continues left to right on the Slave Rack with the next lowest unit
number, and so on until words have been allocated to all of the Slave Racks.

Words are allocated to I/O Terminals and Optical I/O Units according to word set-
tings on the Unit. The word allocated is calculated by adding the first word of the
Master and the word setting on the Unit. To minimize the chance of overlapping
with words allocated to Slave Racks, it is recommended to set I/O Terminal and
Optical I/O Unit settings beginning from 31, the last word allocated to the Master,
and continuing down to lower settings.

Refer to the SYSMAC BUS Remote I/0 System Manual for details on word
allocation to I/O Terminals and Slave Racks.

After the I/O Table has been registered or edited, an “I” will appear before
input bit addresses and a “Q” will appear before output bit addresses on
CVSS/SSS displays. Refer to the CVSS/SSS Operation Manuals for details
on the PC Setup.

3-4 TR (Temporary Relay) Area

48

The TR Area provides eight bits that are used only with the LD and OUT
instructions to enable certain types of branching ladder diagram program-
ming. It is only necessary to use TR bits when entering the program using
mnemonic code. The CVSS/SSS enters TR bits automatically, although the
TR bits are not shown on the CVSS/SSS screen. The use of TR bits is de-
scribed in Section 4 Writing Programs.

TR addresses range from TRO though TR7. Each of these bits can be used
as many times as required and in any order required as long as the same TR
bit is not used twice in the same instruction block.

CPU Bus Link Area

Section 3-5

3-5 CPU Bus Link Area

PC Status Area

&Caution

Calendar/Clock Area

The CPU Bus Link Area is indicated by a G prefix. Addresses range from G000
to G255. The CPU Bus Link Area can be divided into 3 sections, the PC Status
Area, Clock/Calendar Area, and Data Link Area.

G000 is the PC Status Area and contains flags and control bits relating to PC
status. GOO1 to G004 are the Clock/Calendar Area, and G005 to GOO7 are not
used.

Most of the CPU Bus Link Area (G008 to G255) is taken up by the Data Link Area
which is used to transfer information between CPU Bus Units and the CPU. CPU
Bus Units connect to the CPU bus on the CPU Rack or Expansion CPU Rack.

The CPU Bus Link Area words G000 through G007 cannot be written to from the
user program and can only be read from to access the data provided there.

The following table shows the specific functions of flags and control bits in
the PC Status Area, G00O.

G000 bit(s) Function

00 ON when the PC is in PROGRAM mode.

01 ON when the PC is in DEBUG mode.

02 ON when the PC is in MONITOR mode.

03 ON when the PC is in RUN mode.

04 ON when the program is being executed (RUN or MONITOR mode).

05 Not used.

06 ON when a non-fatal error has occured. (PC operation continues.)

07 ON when a fatal error has occured. (PC stops.)

08to 10 Not used.

11 UM Protect Bit. Prevents both reading out and writing to Program
Memory when turned ON. Set with the CVSS/SSS.

12 Memory Card Protect Bit. Prevents writing to Memory Cards when
turned ON. Set with the Memory Card Protect Switch.

13 and 14 Not used.

15 UM Protect Bit. Prevents writing to Program Memory when turned
ON. Set with the System Protect Key Switch.

The following table shows the function of bits in the Calendar/Clock Area,
G001 to G004. The clock is set with the CVSS/SSS. Refer to the CVSS/SSS
Operation Manuals for more details.

Word Bits Contents Possible values
G001 |00 to 07 | Seconds 00 to 59

08 to 15 | Minutes 00 to 59
G002 |00 to 07 | Hours 00 to 23 (24-hour system)

08 to 15 | Day of month | 01 to 31 (adjusted by month and for leap year)
G003 |00 to 07 | Month 1to 12

08 to 15 | Year 00 to 99 (Rightmost two digits of year)
G004 |00 to 07 | Day of week |00 to 06 (00: Sun.; 01: Mon.; 02: Tues.;

03: Wed.; 04: Thurs.; 05: Fri.; 06: Sat.)

Note The accuracy of the internal clock depends on the ambient temperature. Refer

to the following table.

Ambient temperature Error per month
55°C -3 to 0 min
25°C +1 min
0°C —2 to 0 min

49

Auxiliary Area

Section 3-6

Data Link Area

3-6 Auxiliary Area

50

&Caution

The CPU Bus Link Area is disabled by default in the PC Setup and must be
enabled with the CVSS/SSS in order to use the Data Link Area.

The 120 words of CPU Bus Link Area from G008 to G127 are used for outputs
from the CPU to BASIC Units. The 128 words from G128 to G255 are used for
outputs from the BASIC Units. These are divided into 16 groups of 8 words each
and allocated to CPU Bus Units according their unit number settings as shown in
the following tables. All words not output by a particular BASIC Unit are read by it
as inputs from the other BASIC Units.

Unit # 0 1 2 3 4 5 6 7
Words G128 | G136 | G144 | G152 | G160 | G168 | G176 | G184
to to to to to to to to

G135 | G143 | G151 | G159 | G167 | G175 | G183 | G191

Unit # 8 9 10 11 12 13 14 15
Words G192 | G200 | G208 | G216 | G224 | G232 | G240 | G248
to to to to to to to to

G199 | G207 | G215 | G223 | G231 | G239 | G247 | G255

When the PC Setup have been changed to enable the CPU Bus Link, bit 15 of
the first word allocated to each Unit (e.g., bit G12815 for Unit #0) will be OFF
during data reception.

The Auxiliary Area contains flags and control bits used for monitoring and
controlling PC operation, accessing clock pulses, and signalling errors. Auxil-
iary Area word addresses range from A000 through A511; bit addresses,
from AOO00O0 through A51115. Addresses A00O through A255 are read/write,
but addresses A256 through A511 are read only.

The Force Set/Reset operations from the CVSS/SSS behave like the
SET(016) and RSET(017) instructions when applied to words A00O through
A255.

Unused Auxiliary Area words and bits cannot be used as work words and
bits.

The Auxiliary Area contains two sections. The section between A000 and A255
can be read from or written to from the user program. The section between A256
and A511, however, can be read from to access the data provided there, but it
cannot be written to from the user program.

The following table lists the functions of Auxiliary Area flags and control bits.
Most of these bits are described in more detail following the table. Descrip-
tions are in order by address, except that some bits/words with related func-
tions are explained together.

Word(s) Bit(s) Function
A000 00 to 10 Not used.
11 Restart Continuation Bit
12 IOM Hold Bit
13 Forced Status Hold Bit
14 Error Log Reset Bit
15 Output OFF Bit
A001 00to 15 CPU Bus Unit Restart Bits
A002 to A004 00 to 15 Not used.
A005 00 to 07 SYSMAC BUS Error Check Bits
08 to 15 Not used.

Auxiliary Area

Section 3-6
Word(s) Bit(s) Function
A006 00 to 15 Not used.
A007 00to 15 Momentary Power Interruption Time (BCD)
A008 00 to 06 Not used.
07 Stop Monitor Flag
08 Execution Time Measured Flag
09 Differentiate Monitor Completed Flag
10 Stop Monitor Completed Flag
11 Trace Trigger Monitor Flag
12 Trace Completed Flag
13 Trace Busy Flag
14 Trace Start Bit
15 Sampling Start Bit
A009 00to 15 Not used.
A010 to AO11 00to 15 Startup Time (BCD)
A012 to A013 00to 15 Power Interruption Time (BCD)
A014 00to 15 Number of Power Interruptions (BCD)
A015 00 to 15 CPU Bus Service Disable Bits
A016 00 to 15 Not used.
A017 00 to 02 Not used.
03 Host Link Service Disable Bit
04 Peripheral Service Disable Bit
05 1/0 Refresh Disable Bit
06 to 15 Not used.
A018 to A089 00 to 15 Not used.
A090 to A097 00to 15 Reserved for system use
A098 00 FPD(177) Teaching Bit
0lto 15 Not used.
A099 00 to 07 Message #0 to #7 Flags
08 to 15 Not used.
A100to A199 |00to 15 Error Log Area (20 x 5 words)
A200 to A203 00 to 15 Macro area inputs
A204 to A207 00 to 15 Macro area outputs
A208 to A255 00 to 15 Not used.
A20 to A299 00 to 15 Not used.
A300 00to 15 Error Log Pointer (binary)
A301 00to 15 Not used.
A302 00to 15 CPU Bus Unit Initializing Flags
A303 to A305 00 to 15 Not used.
A306 00 Start Input Wait Flag
01 1/0 Verification Error Wait Flag
02 SYSMAC BUS Terminator Wait Flag
03 CPU Bus Unit Initializing Wait Flag
04 to 07 Not used.
08 to 11 Connected Device Code 2: GPC
3: Programming Console
12to 14 Not used.
15 Peripheral Connected Flag
A307 00 to 07 Peripheral Connected Flags for RT #0 to RT #7 of

RM/2 #0

51

Auxiliary Area Section 3-6

Word(s) Bit(s) Function
08 to 15 Peripheral Connected Flags for RT #0 to RT #7 of
RM/2 #1
A308 00 to 07 Peripheral Connected Flags for RT #0 to RT #7 of
RM/2 #2
08 to 15 Peripheral Connected Flags for RT #0 to RT #7 of
RM/2 #3
A309 00to 15 Peripheral Device Cycle Time (binary)

A310 to A325 00to 15 CPU Bus Unit Service Interval (binary)

A326 to A342 00 to 15 Not used.

A343 00 to 02 Memory Card Type
03 to 06 Not used.
07 Memory Card Format Error Flag
08 Memory Card Transfer Error Flag
09 Memory Card Write Error Flag
10 Memory Card Read Error Flag
11 Flle Missing Flag
12 Memory Card Write Flag
13 Memory Card Instruction Flag
14 Accessing Memory Card Flag
15 Memory Card Protected Flag
A344 to 345 00 to 15 Not used.
A346 00to 15 Number of Words Remaining to transfer to memory

card for a file read/write instruction (BCD)

A347 to A399 00 to 15 Not used.

A400 00to 15 Error Code

A401 00 to 04 Not used.
06 FALS Error Flag
07 SFC Fatal Error Flag
08 Cycle Time Too Long Flag
09 Program Error Flag
10 1/0 Setting Error Flag
11 Too Many 1/O Points Flag
12 CPU Bus Error Flag
13 Duplication Error Flag
14 1/0 Bus Error Flag
15 Memory Error Flag

A402 00 to 01 Not used.
02 Power Interruption Flag
03 CPU Bus Unit Setting Error Flag
04 Battery Low Flag
05 SYSMAC BUS Error Flag
06 SYSMAC BUS/2 Error Flag
07 CPU Bus Unit Error Flag
08 Not used.
09 1/0 Verification Error Flag
10 Not used.
11 SFC Non-fatal Error Flag
12 Indirect DM Error Flag
13 Jump Error Flag
14 Not used.
15 FAL Error Flag

52

Auxiliary Area

Section 3-6
Word(s) Bit(s) Function
A403 00 to 08 Memory Error Area Location
09 Memory Card Startup Transfer Error Flag
10 to 15 Not used.
A404 00 to 07 1/0 Bus Error Slot Number (BCD)
08 to 15 1/0 Bus Error Rack Number (BCD)
A405 00to 15 CPU Bus Unit Error Unit Number
A406 00to 15 Not used.
A407 00to 15 Total I/O Words on CPU and Expansion Racks
(BCD)
A408 00to 15 Total SYSMAC BUS/2 I/0 Words (BCD)
A409 00 to 07 Duplicate Rack Number
08to 14 Not used
15 Duplicate System Parameter Words Flag
A410 00to 15 CPU Bus Unit Duplicate Number
A411 to A413 00 to 15 Not used.
A414 00to 15 SFC Fatal Error Code
A415 to A417 00 to 15 Not used.
A418 00to 15 SFC Non-fatal Error Code
A419 00 to 07 CPU-recognized Rack Numbers
08 to 15 Not used.
A420 to A421 00 to 15 Not used.
A422 00to 15 CPU Bus Unit Error Unit Number
A423 00to 13 Not used.
14 CPU Bus Unit Number Setting Error Flag
15 CPU Bus Link Error Flag
A424 00 to 03 SYSMAC BUS/2 Error Master Number
04 to 15 Not used.
A425 00 to 07 SYSMAC BUS Error Master Number
08 to 15 Not used.
A426 00to 13 Not used
14 Memory Card Battery Low Flag
15 PC Battery Low Flag
A427 00to 15 CPU Bus Unit Setting Error Unit Number
A428 to A429 00 to 15 Not used.
A430 to A461 00to 15 Executed FAL Number
A462 to A463 00to 15 Maximum Cycle Time (BCD, 8 digits)
A464 to A465 00to 15 Present Cycle Time (BCD, 8 digits)
A466 to A469 00 to 15 Not used.
A470 to A477 00 to 15 SYSMAC BUS Error Codes:
RM# 0 (A470) RM #1 (A471)
RM# 2 (A472) RM #3 (A473)
RM # 4 (A474) RM #5 (A475)
RM # 6 (A476) RM #7 (A477)
A478 00to 15 Total SYSMAC BUS 1/O Words (BCD)
A479 00to 15 Not used.
A480 to A499 00to 15 SYSMAC BUS/2 Error Unit Number:

RM # 0 (A480 to A484) RM #1 (A485 to A489)
RM # 2 (A490 to A494) RM #3 (A495 to A499)

53

Auxiliary Area Section 3-6
Word(s) Bit(s) Function

A500 00 to 02 Not used.

03 Instruction Execution Error Flag

04 Carry Flag

05 Greater Than Flag

06 Equals Flag

07 Less Than Flag

08 Negative Flag

09 Overflow Flag

10 Underflow Flag

11 Not used.

12 First Cycle Flag when one-step operation is started

with STEP instruction

13 Always ON Flag

14 Always OFF Flag

15 First Cycle Flag
A501 00 0.1-s Clock Pulse

01 0.2-s Clock Pulse

02 1.0-s Clock Pulse

03 0.02-s Clock Pulse

04 to 15 Not used.
A502 00 to 07 Port #0 to #7 Enabled Flags

08 to 15 Port #0 to #7 Execute Error Flags
A503 to A510 00to 15 Port #0 to #7 Completion Codes
A511 00 to 04 Current EM Bank (0 to 7)

05to 14 Not used.

15 EM Installed Flag

Note Do not use A50013 (Always ON Flag), A50014 (Always OFF Flag), or A50015

(First Cycle Flag) to control execution of differentiated instructions. The instruc-
tions will never be executed.

3-6-1 Restart Continuation Bit

3-6-2

54

IOM Hold Bit

Bit AO0O011 can be turned ON to make the PC automatically resume opera-
tion from the point that operation stopped due to a power interruption. If bit

A00011 is OFF, the PC will enter the start-up mode set in the PC Setup and
will begin operation from the first step if the start-up mode is RUN or MON-

ITOR mode.

When the Restart Continuation Bit is turned ON, several parameters in the PC
Setup must also be made for the PC to restart properly. Refer to Section 7 PC
Setup for more detalils.

Bit A0O0012 can be turned ON to preserve the status of the CIO Area, Transi-
tion Flags, Timer Flags, Timer PVs, index registers, data registers, and the
Current EM Bank Number when shifting from PROGRAM or DEBUG to
MONITOR or RUN mode or when shifting from MONITOR or RUN mode to
PROGRAM or DEBUG mode. (I/O Memory includes the CIO Area, TR Area,
CPU Bus Link Area, Auxiliary Area, Transition Flags, Step Flags, Timer
Completion Flags, and Counter Completion Flags.)

When the IOM Hold Bit is OFF, the CIO Area, Transition Flags, Timer Flags, Tim-
er PVs, index registers, data registers, and the Current EM Bank Number are
cleared when switching between these modes.

Auxiliary Area

Section 3-6

If the IOM Hold Bit is ON, and the status of the IOM Hold Bit itself is pre-
served in the PC Setup (Setting B, IOM Hold Bit status), then I1/O Memory is
also preserved when the PC is turned ON or power is interrupted.

3-6-3 Forced Status Hold Bit

3-6-4

3-6-5

3-6-6

3-6-7

3-6-8

Bit AO0013 can be turned ON to preserve the status of bits that have been
force-set or force-reset when switching modes (except RUN mode). When
the Forced Status Hold Bit is OFF, bits that have been force-set or force-re-
set will return to default status when switching between modes.

If the Forced Status Hold Bit is ON, and the status of the Forced Status Hold
Bit itself is preserved in the PC Setup (Setting B, Forced Status Hold Bit sta-
tus), then the status of bits that have been force-set or force-reset is also pre-
served when the PC is turned ON or power is interrupted.

In any case, bits that have been force-set or force-reset will return to default sta-
tus when switching to RUN mode.

Error Log Reset Bit

Output OFF Bit

Bit A0O0014 can be turned ON to clear the contents of the Error Log Area
(words A100 to A199), and reset the Error Record Pointer to 0. The Error Log
Reset Bit is automatically turned OFF after the Error Log Area is cleared.

Bit AO0015 can be turned ON to turn OFF all outputs from the PC. The OUT
INH. indicator on the front panel of the CPU will light. The Output OFF Bit is
turned ON automatically when Restart Continuation (bit AO0011) has taken
place. It is therefore necessary to include a step in the program to turn this bit
OFF to continue operation after a power interruption. Refer to 6-1 PC Opera-
tion for details.

CPU Bus Unit Restart Bits

Bits A0O0100 through A00115 can be turned ON to reset CPU Bus Units number
#0 through #15, respectively. The Restart Bits are turned OFF automatically
when restarting is completed.

Do not turn these bits ON and OFF in the program; manipulate them from the
CVSS/SSS.

SYSMAC BUS Error Check Bits

Bits A0O0500 through A00507 can be turned ON to read out the error codes
(stored in words A470 through A477) for Masters numbered #0 through #7, re-
spectively. The Error Check Bits are turned OFF automatically after the informa-
tion has been read out. Refer to 3-6-35 SYSMAC BUS Error Flag for more de-
tails.

Momentary Power Interruption Time

Word A0Q7 contains the duration of the most recent power interruption. The
time is recorded in 4-digit BCD in milliseconds (0000 ms to 9999 ms), as
shown in the following table.

Bits

15to 12 11 to 08 07 to 04 03 to 00
103 102 101 100

55

Auxiliary Area

Section 3-6

The power interruption time is output to words A012 and A013, and the number
of power interruptions is output to word A014.

3-6-9 CVSS/SSS Flags

Stop Monitor Flag (A0O0807)

Execution Time Measured
Flag (A00808)

Differentiate Monitor
Completed Flag (A00809)

Stop Monitor Completed
Flag (A00810)

Trace Trigger Monitor Flag
(A00811)

Trace Completed Flag
(A00812)

Trace Busy Flag (A00813)

Trace Start Bit (A00814)

Sampling Start Bit (A00815)

3-6-10 Start-up Time

Word A008 contains flags that indicate the status of commands and instructions
performed with the CVSS/SSS.

Bit A0O0807 is turned ON when the Stop Monitor is used from the CVSS/SSS,
and is turned OFF when it is completed.

Bit AO0808 is turned ON when the execution time has been measured with
MARK(174) instructions with the CVSS/SSS.

Bit A0O0809 is turned ON when the differentiate monitor condition has been
established with the CVSS/SSS.

Bit A00810 is turned ON when the Stop Monitor operation has been com-
pleted with the CVSS/SSS.

Bit A00811 is turned ON when one of the trigger conditions has been estab-
lished during execution of a Data or Program Trace with the CVSS/SSS.

Bit A00812 is turned ON upon when the sampling of a region of trace
memory has been completed during execution of a Data or Program Trace
with the CVSS/SSS.

Bit A00813 is turned ON when a Data or Program Trace is executed with the
CVSS/SSS, and is turned OFF when it is completed.

The Trigger conditions are established when bit AO0814 is turned ON by one
of trigger conditions of a Data or Program Trace of the CVSS/SSS.

Bit A00815 is turned ON to start a Data Trace.

Words A010 and A011 contain the start-up time, in BCD format, as shown in the
following table. The start-up time is updated every time the power is turned ON.

Word Bits Contents Possible values
A010 00 to 07 | Seconds 00 to 99
08 to 15 | Minutes 00 to 59
A011 00 to 07 | Hours 00 to 23 (24-hour system)
08 to 15 | Day of month | 01 to 31 (adjusted by month and for leap year)

3-6-11 Power Interruption Time

56

Words A012 and A013 contain, in BCD format, the time at which power was in-
terrupted, as shown in the following table. The power interruption time is up-
dated every time the power is interrupted.

Word Bits Contents Possible values
A012 00 to 07 | Seconds 00 to 99
08 to 15 | Minutes 00 to 59
A013 00 to 07 | Hours 00 to 23 (24-hour system)
08 to 15 | Day of month | 01 to 31 (adjusted by month and for leap year)

Auxiliary Area

Section 3-6

3-6-12 Number of Power Interruptions

Word A014 contains the number of times that power has been interrupted since
the PC was first turned on. The number is in BCD, and can be reset by writing
#0000 to word A014.

3-6-13 Service Disable Bits

CPU Service Disable Bits

Host Link Service Disable
Bit

Peripheral Service Disable
Bit

I/0O Refresh Disable Bit

3-6-14 Message Flags

3-6-15 Error Log Area

Area Structure

Words A015 and A017 contain control bits that disable 1/O servicing to certain
Units and periodic refreshing.Turn these bits ON and OFF in the program. The
service disable bits are automatically turned OFF when power is turned on or PC
operation is stopped.

Bits A01500 through A01515 can be turned ON to stop service to CPU Bus
Units numbered #0 through #15, respectively. Turn the appropriate bit OFF
again to resume service to the CPU Bus Unit.

Bit A01703 can be turned ON to stop Host Link System servicing. Turn OFF
again to resume service to the Host Link System.

Bit A01704 can be turned ON to stop service to Peripheral Devices. Turn
OFF again to resume service to Peripheral Devices.

Bit A01705 can be turned ON to stop periodic and SYSMAC BUS refreshing.
Turn OFF again to resume periodic and SYSMAC BUS refreshing.

When the MESSAGE instruction (MSG(195)) is executed, the bit in A099 corre-
sponding to the message number is turned ON. Bits 00 through 07 correspond
to message numbers 0 through 7, respectively.

Words A100 through A199 contain up to 20 records that show the nature, time,
and date of errors that have occurred in the PC. The Error Log Area will store
system-generated or FAL(006)/FALS(007)-generated error codes. Refer to
Section 8 Error Processing for details on error codes.

The Error Log Area can be moved to the DM or EM Areas and its size can be
increased to store up to 2,047 records with the PC Setup.

With the default PC Setup, error records occupy five words each stored be-
tween words A100 and A199. The last record that was stored can be ob-
tained via the content of word A300 (Error Record Pointer). The record num-
ber, Auxiliary Area words, and pointer value for each of the twenty records
are as follows:

Record Addresses Pointer value*
None N.A. 0000
1 A100 to A104 0001
2 A105 to A109 0002
3 A110 to Al14 0003
4 A115 to A119 0004
5 A120 to A124 0005
6 A125 to A129 0006
7 A130 to A134 0007
8 A135 to A139 0008
9 A140 to Al44 0009

57

Auxiliary Area Section 3-6

Record Addresses Pointer value*
10 A145 to A149 000A
11 A150 to A154 000B
12 A155 to A159 0oocC
13 A160 to A164 000D
14 A165 to A169 000E
15 A170 to Al74 000F
16 A175 to A179 0010
17 A180 to A184 0011
18 A185 to A189 0012
19 A190 to A194 0013
20 A195 to A199 0014

*The pointer value is in word A300, which is in the read-only area (words A256 to A511).

Although each of them contains a different record, the structure of each re-
cord is the same: the first word contains the error code; the second word, the
error contents, and the third, fourth, and fifth words, the time, day, and date.
The error code will be either one generated by the system or by
FAL(006)/FALS(007); the time and date will be the time and date from the
Calendar/Clock Area, words G001 to GO04. This structure is shown below.

Word Bit Content

First 00to 15 Error code

Second 00 to 15 Error contents

Third 00 to 07 Seconds
08to 15 Minutes

Fourth 00 to 07 Hours
081to 15 Day of month

Fifth 00 to 07 Month
08 to 15 Year

Operation When the first error code is generated, the relevant data will be placed in the

error record after the one indicated by the Log Record Pointer (initially this
will be record 1) and the Pointer will be incremented. Any other error codes
generated thereafter will be placed in consecutive records until the last one is
used.

If there are words allocated for n errors and n errors occur, the next error will
be written into the last position, n, the contents of previous error will be
moved to record n—1, and so on until the contents of record 1 is moved off
the end and lost, i.e., the area functions like a shift register that moves data
in units of error records (5 words). The Record Pointer will remain set to n
(binary).

The Error Log Area can be reset by turning ON bit AO0014 (Error Log Reset
Bit). When this is done, the Record Pointer will be reset to 0000, the Error
Log Area will be cleared, and any further error codes will be recorded from
the beginning of the Error Log Area.

3-6-16 CPU Bus Unit Initializing Flags

Bits A30200 through A30215 turn ON while the corresponding CPU Bus Units
(Units #0 through #15, respectively) are initializing.

3-6-17 Wait Flags

Start-up Wait Flag (A30600) Bit A30600 is ON when the CPU Rack Power Supply Unit start input termi-
nals are OFF.

58

Auxiliary Area

Section 3-6

I/O Verification Error Wait
Flag (A30601)

SYSMAC BUS Terminator
Wait Flag (A30602)

CPU Bus Unit Initializing
Wait Flag (A30603)

Bit A30601 is ON when the PC is not running because an 1/O Verification Er-
ror has occurred, and the PC Setup are set so the PC does not run when an

I/O Verification Error occurs. The PC Setup can be changed to enable opera-
tion during I/O Verification Errors. Refer to “Comparison error process” in the
PC Setup.

Bit A30602 is ON when the PC is not running because there is a terminator
missing in the SYSMAC BUS System.

Bit A30603 is ON when the PC is not running because a CPU Bus Unit is
initializing, or a terminator missing in the SYSMAC BUS/2 System.

3-6-18 Peripheral Device Flags

Connected Device Code
(A30608 to A30611)

Peripheral Connected Flag
(A30615)

SYSMAC BUS/2 Peripheral
Flags (A307 and A308)

Peripheral Device Cycle
Time (A309)

Bits A30608 through A30611 contain a binary code that identifies the type of
Peripheral Device (0: FIT10; 1: FIT20; 2: GPC; 3: Programming Console)
connected to the CPU, the Expansion CPU, or an Expansion 1/0O Rack.

Bit A30615 is ON when a Peripheral Device is connected to the CPU, the
Expansion CPU, or an Expansion 1/0O Rack.

Bits A30700 through A30815 are turned ON when a Peripheral Device is
connected to the corresponding Slave Rack, as shown in the following table.

Word Bits

00 to 07 08 to 15
A307 | Racks #0 to #7 on Master #0 Racks #0 to #7 on Master #1
A308 | Racks #0 to #7 on Master #2 Racks #0 to #7 on Master #3

Word A309 contains the cycle time in ms (in binary) required to service Pe-
ripheral Devices, Host Link, and CPU Bus Units. Refer to 6-2 Cycle Time for
details.

3-6-19 CPU Bus Unit Service Interval

Words A310 through A325 contain the interval in ms (binary) between CPU Bus
Unit services for Units #0 through #15, respectively. Measuring the service inter-
val can be enabled or disabled in the PC Setup.

3-6-20 Memory Card Flags

Memory Card Type
(A34300 to A34303)

Memory Card Format Error
Flag (A34307)

Memory Card Transfer Error
Flag (A34308)

Memory Card Write Error
Flag (A34309)

Memory Card Read Error
Flag (A34310)

The binary number stored in A34300 to A34303 indicates the type of Memory
Card, if any, installed in the Memory Card Drive. (0: None, 1: RAM,
2: EPROM, 3: EEPROM)

Bit A34307 is turned ON when the Memory Card is not formatted or a format-
ting error has occurred.

Bit A34308 is turned ON when an error occurs while writing to the Memory
Card.

Bit A34309 is turned ON when the Memory Card cannot be written to be-
cause the card is write-protected, EPROM, EEPROM, data is beyond the
capacity of the card, or there are too many files.

Bit A34310 is turned ON when the specified file is damaged and cannot be
read.

59

Auxiliary Area

Section 3-6

File Missing Flag (A34311)

Memory Card Write Flag
(A34312)

Memory Card Instruction
Flag (A34313)

Accessing Memory Card
Flag (A34314)

Memory Card Protected
Flag (A34315)

Number of Words to
Transfer (A346)

3-6-21 Error Code

3-6-22 FALS Flag

Bit A34311 is turned ON when the specified file is not on the installed card or
no card is installed.

Bit A34312 is turned ON when the Memory Card is being written to from the
program (FILW(181)).

Bit A34313 is turned ON when an instruction affecting Memory Card files
(FILR(180), FILW(181), FILP(182), or FLSP(183)) is being executed.

Bit A34314 is turned ON when the Memory Card is being accessed.

Bit A34315 is turned ON when the Memory Card is write-protected by the
write-protect switch on the card.

Word A346 contains the number of words left to transfer to or from the
Memory Card (FILW(181) or FILR(180)). When either instruction is first
executed, the number of words in the file is placed in word A346 and as data
is transferred, the number of words transferred is subtracted from this num-
ber.

The number of words to transfer is recorded in 4-digit BCD.

A346 bits

15to 12 11 to 08 07 to 04
103 102 101 100

03 to 00

When an error or alarm occurs, the error code is written to A400. If two errors
occur simultaneously, the more serious error, with a higher error code, is re-
corded. Refer to Section 8 Error Processing for details on error codes.

Bit A40106 is turned ON when the SEVERE ALARM FAILURE instruction
(FALS(007)) is executed. The FAL number is written to word A400.

3-6-23 SFC Fatal Error Flag and Error Code

Bit A40107 is turned ON if an error that stops operation occurs while the SFC
program is being executed. The SFC Fatal Error Code is written in BCD to word
A414. Refer to Section 8 Error Processing for details on the error codes.

3-6-24 Cycle Time Too Long Flag

Bit A40108 is turned ON if the cycle time exceeds the cycle time monitoring
time (i.e., the maximum cycle time) set in the PC Setup.

3-6-25 Program Error Flag

Bit A40109 is turned ON if there is a program syntax error (including no
END(001) instruction).

3-6-26 1/0 Setting Error Flag

Bit A40110 is turned ON if the I/O designation of a slot has changed, e.g., an
Input Unit has been installed in an Output Unit’s slot, or vice versa.

3-6-27 Too Many 1I/O Points Flag

60

Bit A40111 is turned ON if the total number of I/O points being used exceeds the
maximum for the PC. The total number of I/O points being used on CPU and Ex-

Auxiliary Area Section 3-6

pansion Racks is written to word A407; in the SYSMAC BUS/2 system, to word
A408; and in the SYSMAC BUS system, to word A478.

3-6-28 CPU Bus Error and Unit Flags

Bit A40112 is turned ON when an error occurs during the transmission of data
between the CPU and CPU Bus Units, or a WDT (watchdog timer) error occurs
in a CPU Bus Unit. The unit number of the CPU Bus Unit involved is contained in
word A405.

Bits A40500 through A40515 correspond to CPU Bus Units #0 through #15, re-
spectively. When a CPU Bus Error occurs, the bit corresponding to the unit num-
ber of the CPU Bus Unit involved is turned ON.

3-6-29 Duplication Error Flag and Duplicate Rack/CPU Bus Unit Numbers

Bit A40113 is turned ON when two Racks are assigned the same rack number,
two CPU Bus Units are assigned the same unit number, or the same words are
allocated to more than one Rack or Unit in the PC Setup. The duplicate Expan-
sion I/O Rack number is written to word A409, and the duplicate CPU Bus Unit
number is written to word A410.

Bits A40900 through A40907 correspond to Racks #0 through #7, respectively.
When two Racks have the same rack number, the bits corresponding to the rack
numbers involved are turned ON. Bit A40915 is also turned ON to indicate that
the same words are allocated to more than one Rack or Unit in the PC Setup.
Bits A41000 through A41015 correspond to CPU Bus Units #0 through #15, re-
spectively. When two CPU Bus Units have the same unit number, the bits corre-
sponding to the unit numbers of the CPU Bus Units involved are turned ON.

3-6-301/0 Bus Error Flag and I/O Bus Error Slot/Rack Numbers

Bit A40114 is turned ON when an error occurs during the transmission of data
between the CPU and I/O Units through the 1/0O bus, or a terminator is not
installed correctly. The rack/slot number of the Unit involved is written to word
A404.

Bits A40400 through A40407 contain the slot number, in BCD, of the I/O Unit
where the error occurred. If the error did not occur with an I/O Unit, then these
bits contain #0F. Bits A40408 through A40415 contain the rack number, in BCD,
of the Rack where the error occurred.

If the error occurred because of a terminator setting, word A404 will contain
#OEOF for line 0 (I0C right connector), or #0FOF for line 1 (IOC left connector).

3-6-31 Memory Error Flag

Bit A40115 is turned ON when an error occurs in memory. The memory area in-
volved is written to word A403.

3-6-32 Power Interruption Flag

Bit A40202 is turned ON when power is momentarily interrupted if a momentary
power interruption is set as an error in the PC Setup (see “Error on power off’ in
the PC Setup). The time and date of the most recent power interruption is written
to words A012 and A013, and the number of power interruptions is written to
word A014.

3-6-33 CPU Bus Unit Setting Error Flag and Unit Number

Bit A40203 is turned ON when the CPU Bus Units actually installed differ from
the Units registered in the I/O table. The unit number of the CPU Bus Unit in-
volved is written to word A427.

Bits A42700 through A42715 correspond to CPU Bus Units #0 through #15, re-
spectively. When a error occurs, the bit corresponding to the unit number of the
CPU Bus Unit involved is turned ON.

61

Auxiliary Area

Section 3-6

3-6-34 Battery Low Flags

Bit A40204 is turned ON if the voltage of the CPU or Memory Card battery drops.
If the problem has occurred with the Memory Card battery, bit A42614 will be
turned ON, and if the problem has occurred with the CPU battery, bit A42615 will
be turned ON.

3-6-35 SYSMAC BUS Error Flag, Check Bits, and Master/Unit Numbers

Bits 00 to 02

Bit 03 — Remote I/O Error
Flag

Bits 04 to 15

Error Check Bits
(A00500 to A00507)

Bit A40205 is turned ON when an error occurs during the transmission of data in
the SYSMAC BUS system. The number of the Master involved is written to word
A425, and information about the Unit(s) involved is written to words A470
through A477.

Bits A42500 through A42507 correspond to Masters #0 through #7, respective-
ly. When a error occurs, the bit corresponding to the number of the Master in-
volved is turned ON.

Words A470 through A477 are used to indicate which Unit is involved in the
error on Masters #0 through #7, respectively. The function of each bit is de-
scribed below. Refer to the Optical and Wired Remote I/O System Manuals
for detalils.

Not used.
Bit 03 turns ON when an error has occurred in remote I/O.

If the content of bits 12 through 15 is B, an error has occurred in a Remote
I/O Master or Slave Unit, and the content of bits 08 through 11 will indicate
the number of the Master of the Remote I/O Subsystem involved. These
numbers are assigned to Masters in the order that they are mounted to the
CPU and Expansion Racks. If the error is in the Master, the value of bits 4 to
7 will be 8. If the error is in a Slave, bits 4 to 7 will contain the unit number of
the Slave where the error occurred.

If the content of bits 12 through 15 is other than B, an error has occurred in
an Optical I/O Unit, I/0O Link Unit, or I/O Terminal. Here, bits 08 through 15
will provide the word address (#00 to #31) that has been set on the Unit.

When this Unit is an Optical I/O Unit, bit 04 will be ON if the Unit is assigned
leftmost bits (08 through 15), and OFF if it is assigned rightmost bits (00
through 07).

If there are errors in more than one Unit for a single Master, words A470
through A477 will contain error information for only the first one. Data for the
remaining Units will be stored in memory and can be accessed by turning ON
the Error Check Bit for that Master. Bits AO0500 through A00507 are the Er-
ror Check Bits for Masters #0 through #7, respectively. Error Check Bits are
automatically turned OFF when data has been accessed. Write down the
data for the first error if required before using the Error Check Bit; previous
data will be cleared when data for the next error is displayed.

3-6-36 SYSMAC BUS/2 Error Flag and Master/Unit Numbers

62

Bit A40206 is turned ON when an error occurs during the transmission of data in
the SYSMAC BUS/2 System. The number of the Master involved is written to
word A424, and information about the Slave Unit(s) involved is written to words
A480 through A499.

Bits A42400 through A42403 are turned ON when the error involves Masters #0
through #3, respectively.

Auxiliary Area Section 3-6

Information identifying the Slave Unit(s) involved is contained in words A480
through A499, which are divided into four groups of five words, one group for
each Master, as shown below.

Words Master number
A480 to A484
A485 to A489
A490 to A494
A495 to A499

W|INIFL|O

Bits are turned ON to indicate which of the Slaves connected to the Master
was involved in the error, as shown below.

Word Bits Slave
First 00 to 15 Group-1 Slaves #0 to #15
Second 00to 15 Group-1 Slaves #16 to #31
Third 00to 15 Group-2 Slaves #0 to #15
Fourth 00 to 07 Slave Racks #0 to #7
(Group-3 Slaves)

08 to 15 Not used.

Fifth 00to 15 Not used

3-6-37 CPU Bus Unit Error Flag and Unit Numbers

Bit A40207 is turned ON when a parity error occurs during the transmission of
data between the CPU and CPU Bus Units. The unit number of the CPU Bus Unit
involved is written to word A422.

Bits A42200 through A42215 correspond to CPU Bus Units #0 through #15, re-
spectively. When a CPU Bus Unit Error occurs, the bit corresponding to the unit
number of the CPU Bus Unit involved is turned ON.

3-6-38 I/0O Verification Error Flag

Bit A40209 is turned ON when the Units mounted in the system disagree with
the 1/O table registered in the CPU. To ensure proper operation, PC opera-
tion should be stopped, Units checked, and the 1/O table corrected whenever
this flag goes ON.

3-6-39 SFC Non-fatal Error Flag and Error Code

Bit A40211 is turned ON if an error that does not stop operation occurs while the
SFC program is being executed. The error code is written to word A418. Refer to
Section 8 Error Processing for details on the error codes.

3-6-40 Indirect DM BCD Error Flag

Bit A40212 is turned ON if the content of an indirectly addressed DM word is not
BCD when BCD is specified in the PC Setup.

The contents of indirectly addressed DM words can be set to either binary or
BCD with the PC Setup. Binary addresses will access memory according to PC
memory addresses. BCD will access other DM words according to DM Area ad-
dresses. If binary addresses are used, this flag will not operate.

3-6-41 Jump Error Flag
Bit A40213 is turned ON if there is no destination for a JMP(004) instruction.

3-6-42 FAL Flag and FAL Number

Bit A40215 is turned ON when the FAL(006) instruction is executed. The FAL
number is then written to words A430 to A461. Bits from A43001 to A46115 cor-
respond consecutively to FAL numbers 001 to 511

63

Auxiliary Area Section 3-6

3-6-43 Memory Error Area Location

Bits A40300 to A40308 are turned ON to indicate the memory area in which a
memory error has occurred. The bits correspond to memory areas as follows:
00: Program Memory 05: 1/O Table

01: Memory Card 06: System Memory

02: 1/0 Memory 07: Routing Tables

03: EM 08: CPU Bus Unit Software Switches
04: PC Setup

3-6-44 Memory Card Start-up Transfer Error Flag

Bit A40309 is turned ON when an error occurs during the transmission of the
program from the Memory Card when power is turned ON. An error can occur
because the AUTOEXEC file is missing, the Memory Card is not installed, or the
System Protect setting is ON.

3-6-45 CPU-recognized Rack Numbers
Bits A41900 through A41907 are turned ON when Expansion Racks #0 through
#7, respectively, are recognized by the CPU.

3-6-46 CPU Bus Unit Number Setting Error Flag
Bit A42314 is turned ON when a CPU Bus Unit is not set to an acceptable unit
number (0 to 15).

3-6-47 CPU Bus Link Error Flag
Bit A42315 is turned ON when a parity error occurs with CPU bus links.

3-6-48 Maximum Cycle Time

Words A462 and A463 contain the maximum cycle time that has occurred
since operation was started. If the maximum cycle time is exceeded, howev-
er, the previous maximum cycle time will remain in words A462 and A463.
The time is recorded in 8-digit BCD in tenths of milliseconds (0000000.0 ms
t0 9999999.9 ms), as shown in the following table.

Word Bits
15to 12 11 to 08 07to 04 03 to 00
A463 106 105 104 108
A462 102 101 100 101

3-6-49 Present Cycle Time

Words A464 and A465 contain the present cycle time unless the maximum
cycle time is exceeded, in which case the previous cycle time will remain.
The time is recorded in 8-digit BCD in tenths of milliseconds (0000000.0 ms
t0 9999999.9 ms), as shown in the following table.

Word Bits
15to 12 11 to 08 07 to 04 03 to 00
A465 106 105 104 108
A464 102 101 100 101

3-6-50 Instruction Execution Error Flag, ER

Bit A50003 is turned ON if an attempt is made to execute an instruction with
incorrect operand data. Common causes of an instruction error are non-BCD
operand data when BCD data is required, or an indirectly addressed DM

64

Auxiliary Area

Section 3-6

word that is non-existent. When the ER Flag is ON, the current instruction
will not be executed.

3-6-51 Arithmetic Flags

&Caution

Carry Flag, CY

Greater Than Flag, GR
Equals Flag, EQ

Less Than Flag, LE
Negative Flag, N
Overflow Flag, OF

Underflow Flag, UF

&Caution
3-6-52 Step Flag

The following flags are used in data shifting, arithmetic calculation, and com-
parison instructions. They are generally referred to only by their two-letter
abbreviations.

These flags are all reset when the END instruction is executed, and therefore
cannot be monitored from a Peripheral Device.

Refer to 5-14 Shift Instructions, 5-16 Comparison Instructions, 5-18 BCD Cal-
culation Instructions, and 5-19 Binary Calculation Instructions for details.

Bit A50004 is turned ON when there is a carry in the result of an arithmetic
operation or when a rotate or shift instruction moves a “1” into CY. The con-
tent of CY is also used in some arithmetic operations, e.g., it is added or sub-
tracted along with other operands. This flag can be set and cleared from the
program using the SET CARRY and CLEAR CARRY instructions. This Flag
is also used by the I/O READ and I/O WRITE instructions. Refer to page 405
for details.

Bit A50005 is turned ON when the result of a comparison shows the first of
two operands to be greater than the second.

Bit A50006 is turned ON when the result of a comparison shows two oper-
ands to be equal or when the result of an arithmetic operation is zero.

Bit A50007 is turned ON when the result of a comparison shows the first of
two operands to be less than the second.

Bit A50008 is turned ON when the highest bit in the result of a calculation is
ON.

Bit A50009 is turned ON when the absolute value of the result is greater than
the maximum value that can be expressed.

Bit A50010 is turned ON when absolute value of the result is less than the
minimum value that can be expressed.

The previous seven flags are cleared when END(001) is is executed.

Bit A50012 is turned ON for one cycle when step execution is started with the
STEP(008) instruction.

3-6-53 First Cycle Flag

When ladder-only programming is used, bit A50015 turns ON when PC op-
eration begins and then turns OFF after one cycle of the program. When
SFC programming is used, A50015 turns ON for one cycle at the beginning
of action program execution. A50015 also turns ON at the beginning of
scheduled interrupt execution. The First Cycle Flag is useful in initializing
counter values and other operations. An example of this is provided in 5-13
Timer and Counter Instructions.

65

Transition Area

Section 3-7

Note Do not use A50015 to control execution of differentiated instructions. The

instructions will never be executed.

3-6-54 Clock Pulse Bits

&Caution

Four clock pulses are available to control program timing. Each clock pulse
bit is ON for the first half of the rated pulse time, then OFF for the second
half. In other words, each clock pulse has a duty factor of 50%.

These clock pulse bits are often used with counter instructions to create tim-
ers. Refer to 5-13 Timer and Counter Instructions for an example of this.

Pulse width 0.1s 0.2s 10s 0.02s
Bit A50100 | A50101 | A50102 | A50103
Bit A50100 Bit A50101
0.1-s clock pulse 0.2-s clock pulse
~—055—~— 055—~ ~—Ols—~~—015—~
))))))
— 01s — — 02s—
Bit A50102 Bit A50103
1.0-s clock pulse 0.02-s clock pulse
’—055—>’— 055—> ’—Ols—>’— Ols—-
))) '))
; 10s ' ; 0.02's !

Because the 0.1-second and 0.02-second clock pulse bits have ON times of 50
and 10 ms, respectively, the CPU may not be able to accurately read the pulses if
program execution time is too long.

3-6-55 Network Status Flags

Bits A50200 through A50207 are turned ON to indicate that ports #0 through
#7, respectively, are enabled for the SEND(192), RECV(193), and
CMND(194) in either a SYSMAC NET Link or SYSMAC LINK System. Bits
A50208 through A50215 are turned ON to indicate that an error has occurred
in ports #0 through #7, respectively, during data communications using
SEND(192), RECV(193), or CMND(194).

A503 through A510 contain the completion codes for ports #0 through #7, re-
spectively, following data communications using SEND(192), RECV(193), or
CMND(194). Refer to the SYSMAC NET Link System Manual or SYSMAC LINK
System Manual for details on completion codes.

3-6-56 EM Status Flags

The rightmost digit of A511 will contain the current bank number. Bit A51115 (the
EM Installed Flag) is turned ON when a EM Unit is mounted to the CPU.

3-7 Transition Area

66

A transition is a condition which moves the active status from one step to the next
in the SFC program. Flags in the Transition Area are turned ON when a
TOUT(202) instruction is executed with an ON execution condition, or a
TCNT(123) counter times out.

The CV500 has 512 Transition Flags, numbered TN0OOOO to TN0511, and the
CV1000 or CV2000 has 1,024 Transition Flags, numbered TNOOOO to TN1023.

Timer Area

Section 3-9

3-8 Step Area

3-9 Timer Area

Input the transition number as a bit operand when designating Transition Flags
in instructions.

The CVML1 does not support SFC programming and is not equipped with a Tran-
sition Area.

A step in the program represents a single process. All SFC programs are
executed by step. Each step must have its own unique step number. Flags in the
Step Area are turned ON to indicate that a step is active.

The CV500 has 512 Step Flags, numbered STO000 to ST0511, and the CV1000
or CV2000 has 1,024 Step Flags, numbered STO000 to ST1023. Input the step
number as a bit operand when designating Step Flags in instructions.

The CVML1 does not support SFC programming and is not equipped with a Step
Area.

Timer Completion Flags and present values (PV) are accessed through timer
numbers ranging from TO000 through T0511 for the CV500 or
CVM1-CPUO01-EV2 and from TO00O0 through T1023 for the CV1000, CV2000,
CVM1-CPU11-EV2, or CVM1-CPU21-EV2. Each timer number and its set
value (SV) are defined using timer instructions. No prefix is required when
using a timer number to create a timer in one of these instructions.

The same timer number can be defined using more than one of these
instructions as long as the instructions are not executed in the same cycle. If
the same timer number is defined in more than one of these instructions or in
the same instruction twice, an error will be generated during the program
check, but as long as the instructions are not executed in the same cycle,
they will operate correctly. There are no restrictions on the order in which tim-
er numbers can be used.

Once defined, a timer number can be designated as an operand in one or
more of certain instructions. Timer numbers can be designated for operands
that require bit data or for operands that require word data. When designated
as an operand that requires bit data, the timer number accesses the Comple-
tion Flag of the timer. The Completion Flag will be ON when the timer has
timed out. When designated as an operand that requires word data, the timer
number accesses a memory location that holds the PV of the timer.

Timer PVs are reset when PC operation is begun, when the CNR(236)
instruction is executed, and when in interlocked program sections when the
execution condition for IL(002) is OFF. Refer to 5-8 Interlock and Interlock
Clear — IL(02) and ILC(03) for details on timer operation in interlocked pro-
gram sections.

When the cycle time exceeds 10 ms, define TIMH(015) instructions with timer
numbers TO000 through T0127 for the CV500 or CVM1-CPUO1-EV2, and
TOO0O0 through T0255 for the CV1000, CV2000, CVM1-CPU11l-EV2, or
CVM1-CPU21-EV2, to ensure accuracy.

TIM timers are not affected by the cycle time, but TTIM(120) timers time slowly if
the cycle time exceeds 100 ms.

67

DM and EM Areas

Section 3-11

3-10 Counter Area

Counter Completion Flags and present values (PV) are accessed through
counter numbers ranging from C0000 through C0511 for the CV500 or
CVM1-CPUO1-EV2 and from C0000 through C1023 for the CV1000,
CVv2000, CVM1-CPU11-EV2, or CVM1-CPU21-EV2. Each counter number
and its set value (SV) are defined using counter instructions. No prefix is re-
quired when using a counter number to create a counter in a counter instruc-
tion.

The same counter number can be defined using more than one of these
instructions as long as the instructions are not executed in the same cycle. If
the same counter number is defined in more than one of these instructions or
in the same instruction twice, an error will be generated during the program
check, but as long as the instructions are not executed in the same cycle,
they will operate correctly. There are no restrictions on the order in which
counter numbers can be used.

Once defined, a counter number can be designated as an operand in one or
more of certain instructions other than those listed above. Counter numbers
can be designated for operands that require bit data or for operands that re-
quire word data. When designated as an operand that requires bit data, the
counter number accesses the completion flag of the counter. When desig-
nated as an operand that requires word data, the counter number accesses a
memory location that holds the PV of the counter.

Counter PVs are reset when the CNR(236) instruction is executed, but unlike
timers, counters maintain their status when PC operation is begun, and when
in interlocked program sections when the execution condition for IL(002) is
OFF.

3-11 DM and EM Areas

68

The DM (Data Memory) Area is used for internal data storage and manipula-
tion and is accessible only by word. Addresses range from DO000O through
D08191 for the CV500 or CVM1-CPUOQ1-EV2; from DO000O0 through D24575
for the CV1000, CV2000, CVM1-CPU11-EV2, or CVM1-CPU21-EV2.

The EM (Extended Data Memory) Area is available with the CV1000,
CV2000, or CVM1-CPU21-EV2 only and only if purchased and installed as
an option. EM Area and DM Area functions are identical. The main difference
between EM and DM is that DM is internal, while EM is contained on an EM
Unit, a card that fits into a slot on the CV1000, CV2000, or
CVM1-CPU21-EV2 CPU. There are three models of Memory Units available,
with 64K words (E00000 to E32765 x 2 banks), 128K words (E00000 to
E32765 x 4 banks), and 256K words (E00000 to E32765 x 8 banks).

When the PC is turned on, the EM bank number is automatically set to 0, but can
be changed with the EMBC(171) instruction.

When using the SYSMAC NET Link or SYSMAC LINK systems, DO0000
through D00127 are automatically allocated as part of the Data Link Table
unless data link are set manually from the CVSS/SSS. The 1,600 words
from D02000 to D03599 are allocated for CPU Bus Units, 100 words for each
Unit. The particular function depends on the type of CPU Bus Unit being
used. Refer to the CPU Bus Unit's Operation Manual for detalils.

Note DO02000 to D03599 are not used by SYSMAC BUS/2 Remote I/O Master Units.

DM and EM Areas

Section 3-11

Indirect Addressing

Although composed of 16 bits just like any other word in memory, DM and
EM words cannot be specified by bit for use in instructions with bit-size oper-
ands, such as LD, OUT, AND, and OR, nor can DM words be used with the
SHIFT instruction.

The DM and EM Areas retain status during power interruptions.

Normally, when the content of a data area word is specified for an instruction,
the instruction is performed directly on the content of that word. For example,
suppose CMP(020) (COMPARE) is used in the program with CIO 0005 as
the first operand and D00010 as the second operand. When this instruction
is executed, the content of CIO 0005 is compared with that of D0O0010.

It is also possible, however, to use indirect DM and EM addresses as oper-
ands for instructions. If xD00100 is specified as the data for a programming
instruction, the asterisk in front of D indicates that it is an indirect address
that specifies another which contains the actual operand data. Likewise, EM
indirect addressing is indicated by an asterisk in front of the E, XE. When ad-
dressed indirectly, the content of xD00100 can be read as either BCD or
binary (hexadecimal) data, depending on the PC Setup for indirect addres-
sing.

If the PC Setup define the content of a xDM (or xEM) address as BCD, the
number indicates another DM (or EM) address. If the contents of the xDM
address are not BCD, a xDM BCD error will occur, and an error flag, A50003,
will be turned ON. Because only the last four digits of the final address can
be specified in one word, the range of possible BCD numbers is #0000 to
#9999, and the range of DM addresses that can be addressed indirectly is
D00000 to D09999.

If the content of DO0100 is #0324, then *D00100 indicates D00324 as the
word that contains the desired data, and the content of D00324 is used as
the operand in the instruction. The following shows an example of this with
the MOVE instruction.

(030) Word Content

—— MoV xD00100 A0%0] \DOOOQQ 4C59
Indirect D00100 0324 indicat

nairec naicates

address D00101 F35A D00324.

D00324 [5555
D00325 2506 | . 5555 moved
D00326 | D541 to A0090.

If the PC Setup define the content of a *xDM address as binary, the number
indicates a PC memory address. The range of possible binary numbers,
$0000 to $FFFF, allows all memory areas, including EM, to be indirectly ad-
dressed.

wilf, in this case, the content of D00100 is $0324, then xD00100 indicates PC
memory address $0324, which is CIO 0804 in the SYSMAC BUS/2 Area, as the
word that contains the desired data, and the content of CIO 0804 is used as the
operand in the instruction. The following example shows this type of indirect ad-
dressing with the MOVE instruction.

69

Index and Data Registers (IR and DR) Section 3-12

—[1\(/|0c>3\9) *D00100 A090] \ Dvgggjgg Cc:lr(]:t:gt
indirect D00100 0200 Indicat
nairec naicates
address Do0101 F35A ClO 0512.

CIO 0512 | 5555

Cl0 0513 [2506 | . 5555 moved
CIO 0514 | D541 to A090.

Indirect addressing can also be used in instructions that require bit operands
for bits in the Core 1/0 Area ($0000 to $0FFF). These bits are designated by
using the rightmost digits of the memory address as the leftmost three digits
of the hexadecimal address and adding the bit number as the rightmost digit.
For example, the CIO bit 190000 is designated by $76CA where 76C is the
rightmost three digits of the memory address (CIO word 1900 is $076C) and
A is bit 10.

3-12 Index and Data Registers (IR and DR)

Direct Addressing

Indirect Addressing

70

The Index Registers, IR0, IR1, and IR2, which contain a single word of data, are
used for indirect addressing. A “,” prefix is included before an Index Register to
indicate indirect addressing, just as the “x” prefix is used to indicate indirect ad-
dressing with DM and EM.

If an Index Register is used as an operand in an instruction without the “,”

prefix, the instruction is performed directly on the content of that Index Regis-
ter, as in the following example.

(030)

——{ ™MoV Do0000 R0] Word Content Word Content
D00000 08FC —_— IRO 08FC
08FC moved
to IRO.

If an Index Register is used as an operand in an instruction with the “,” prefix,
the instruction is performed on the word at the PC memory address indicated
by that Index Register, as in the following example.

(030)

—Mov Dpooooo IR0 \Word Content Word Content
: D00000 08FC — CIO 1900 08FC

] 13

' 08FC moved '

. ' to CIO 1900. '

Indirect !

address ' Word Content _;

Indicates 076C
(CIO 1900)

Indirect addressing can also be used in instructions that require bit operands
for bits in the Core 1/0O Area ($0000 to $0FFF). These bits are designated by
using the rightmost digits of the memory address as the leftmost three digits

Index and Data Registers (IR and DR)

Section 3-12

Offset Indirect Addressing

Auto-increments and
Auto-decrements

of the hexadecimal address and adding the bit number as the rightmost digit.
For example, the CIO bit 190000 is designated by $76CA where 76C is the
rightmost three digits of the memory address (CIO word 1900 is $076C) and
A is bit 10.

The PC memory address indicated in an Index Register can be offset by a
specified constant or by the content of a Data Register (DR0O, DR1, or DR2)
by inputting the constant or the Data Register before the “,” prefix. The
constant must be in BCD between —2047 and +2047. To offset the indirect

addressing by +31 words, simply input +31, before the “,” prefix, as shown.

(030)
——{mov' Dooooo +311IR0T] Word

Content Word Content
! D00000 08FC| — ClO 1931 | O08FC
] 13
! 08FC moved '
. ' to CIO 1931. '
Indirect '
address . Register Content ' Indicates 0788
Tt - IRO o7ec ! (CIO 1931)
+31 1F '
078B ---+4

If a Data Register is input before the “,” prefix, the content of the Data Register
will be added to the content of the Index Register, and the result is the PC
memory address that is indirectly addressed. If the result exceeds $FFFF, the
carry to the fifth digit is truncated (effectively subtracting $10000 (65,536, deci-
mal) from the result). In the following example, DR1 is added to IR0. The content
of DR1 is $FFE1, so adding $FFEL is equivalent to subtracting 1F ($0FFE1 —
$10000 = —1F), for all IRO values greater than or equal to $001F.

(030)

——{ Mov' Dpooooo bRLIRO] \Word Content Word Content
' DO00000 08FC| — CIO 1869 | 08FC

] 13

X 08FC moved .

. ' to CIO 1869. !

Indirect '

address ! Register Content |

[»DR1 FFE1 ' Indicates 074D

IRO 076C . (CIO 1869)

074D ---"

An auto-increment increases the contents of an Index Register by 1 or 2 after
executing the instruction. A “+” suffix indicates an auto-increment of 1, and a
“++” suffix indicates an auto-increment of 2.

An auto-decrement decreases the contents of an Index Register by 1 or 2 before
executing the instruction. A“-" prefix indicates an auto-decrement of 1, and a
“—" prefix indicates an auto-decrement of 2. The notation for auto-increments
and auto-decrements is as follows:

,IRn+: After execution, increase the contents of IRn by 1.
,IRn++: After execution, increase the contents of IRn by 2.
,—IRn: Decrease the contents of IRn by 1 before execution.
,—IRn: Decrease the contents of IRn by 2 before execution.

Both an auto-increment and an auto-decrement are used in the following exam-
ple. The data movement for the first execution is shown. The second execution

71

Index and Data Registers (IR and DR) Section 3-12

would move the contents of CIO 1902 to CIO 1898; the third execution would
move the contents of CIO 1904 to CIO 1897; etc.

(030)

—mov IRo++ IR1-] Word Content Word Content
: : CIO 1900 08FC| — CIlO 1899 08FC
[] 13 1
' - ! ' CIO 1900 — 1
' . , ClO_1900 !
] T TTTTTTTTSSSSSsss ST " |
'] ' '
X X Register Content '
! R ~IR1 076Cf-+ !
R ~ IR0 076C} - - - 4

72

SECTION 4
Writing Programs

This section explains the basic steps and concepts involved in writing a basic ladder diagram program. It introduces the
instructions that are used to build the basic structure of the ladder diagram and control its execution, along with a few other
instructions of special interest in programming. It also introduces the new version-2 CVM1 CPUs instructions and explains
the data formats that they can utilize.

The entire set of instructions used in programming is describ®édtion 5 Instruction Set

4-1 BaSiC ProCedure 74
4-2 Instruction Terminology.o 74
4-3 Basic Ladder Diagramsottt e 75
4-3-1 BaSIC TeIMS. . o ottt 75
4-3-2 Basic Mnemonic Code. 76
4-3-3 Ladder INStructions.o e 77
4-3-4 OUTPUT and OUTPUT NOTottt 79
4-3-5 The END INStruction.ot e 80
4-4 MNemoNiC COORt 80
4-4-1 Logic BIOCK INStruCtioNnS.o 80
4-4-2 Coding Multiple Right-hand Instructions. 87
4-5 Branching Instruction LINES. e 87
4-5-1 TR BIS . .ot 88
4-5-2 InterloCKS 90
A-B JUMIPS . o« o ittt et e 92
4-7 Controlling Bit Statuso 93
4-7-1 DIFFERENTIATE UP and DIFFERENTIATEDOWN. 94
4-7-2 SET and RESET. e e e 94
4-7-3 KEEP . . . 94
4-7-4 Self-maintaining Bits (Seal). 95
4-8 Intermediate INStrUCLIONSot 96
4-9 Work Bits (Internal Relays)o 96
4-10 Programming PreCautions. i 98
4-11 Program EXECULION.ttt e 99
4-12 Using Version-2 CVML CPUS e e 99
4-12-1 Input Comparison InStructions 99
4-12-2 CMP and CMPL e e e 102
4-12-3 Enhanced Math Instructions. i 103
4-13 Data Formats.o 104
4-13-1 Unsigned Binary Data i 104
4-13-2 Signed Binary Data 105
4-13-3 BCD Data . . .o oot 108
4-13-4 Signed BCD Data. 108
4-13-5 Floating-point Data.ot 108

73

Instruction Terminology

Section 4-2

4-1

4-2

74

Basic Procedure

1,2 3.

There are several basic steps involved in writing a program. Sheets that can be
copied to aid in programming are provided in Appendix E I/O Assignment Sheets
and Appendix F Program Coding Sheet.

1. Obtain a list of all I/O devices and the 1/O points that have been assigned to
them and prepare a table that shows the I/O bit allocated to each I/O device.

2. If the PC has any Units that are allocated words in data areas other than the
CIO area or are allocated CIO words in which the function of each bit is spe-
cified by the Unit, prepare similar tables to show what words are used for
which Units and what function is served by each bit within the words. These
Units include CPU Bus Units, Special I/0 Units, and Link Units.

3. Determine what words are available for work bits and prepare a table in
which you can allocate these as you use them.

4. Also prepare tables of timer and counter numbers and jump numbers so that
you can allocate these as you use them. Remember, timer and counter
numbers can be defined only once within the program; jump numbers can
be used only once each. (timer/counter numbers are described in 5-13 Tim-
er and Counter Instructions; jump numbers are described in this section.)

5. Draw the ladder diagram. If SFC programming is being used, you will need
to write a ladder diagram for each action program and each transition pro-
gram. You will also need to write interrupt programs if they are required.

Note The CVM1 does not support SFC programming.

6. Input the program into the CPU. Actual input is done from the CVSS and is
possible in either ladder diagram or mnemonic form.

7. Check the program for syntax errors and correct these.
8. Execute the program to check for execution errors and correct these.

9. After the entire Control System has been installed and is ready for use,
execute the program and fine tune it if required.

The basics of ladder-diagram programming and conversion to mnemonic code
are described in 4-3 Basic Ladder Diagrams. The rest of Section 4 covers more
advanced programming, programming precautions, and program execution. All
instructions are covered in Section 5 Instruction Set. Section 8 Error Processing
provides information required for debugging. Refer to the CVSS Operation
Manuals for program input, debugging, and monitoring procedures.

Instruction Terminology

There are basically two types of instructions used in ladder-diagram program-
ming: instructions that correspond to the conditions on the rungs of the ladder
diagram and are used in instruction form only when converting a program to
mnemonic code, and instructions that are used on the right side of the ladder
diagram and are executed according to the conditions on the instruction lines
leading to them.

Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is performed.
These are sometimes input as the actual numeric values, but are usually the ad-
dresses of data area words or bits that contain the data to be used. For instance,
a MOVE instruction that has CIO 0000 designated as the source operand will
move the contents of CIO 0000 to some other location. The other location is also
designated as an operand. A bit whose address is designated as an operand is
called an operand bit ; a word whose address is designated as an operand is
called an operand word . If the value is entered as a constant, it is preceded by #
to indicate it is not an address, but the actual value to be used in the instruction.

Refer to Section 5 Instruction Set for other terms used in describing instructions.

Basic Ladder Diagrams

Section 4-3

4-3 Basic Ladder Diagrams

4-3-1 Basic Terms

Normally Open and
Normally Closed
Conditions

0000
00

A ladder diagram consists of two vertical lines running down the sides with lines
branching in between them. The vertical lines are called bus bars ; the branch-
ing lines, instruction lines or rungs. Along the instruction lines are placed
conditions that lead to other instructions next to the right bus bar. The logical
combinations of the conditions on the instruction lines determine when and how
the instructions at the right are executed. A ladder diagram is shown below.

0000 0063 0252 0001 0025 0244 0244
00 15

08 09 03 00 01
— - = e rsneien-
0000 0005 0005 0005 0005
01 01 02 03 04
—— - H—H————

0001 0000 0000 0000 0000 TOOO 0005 0004 0004
00 02 0 0

H b - - b e}

0000 0210 0210
10 o1 02
_| I w1
Al Al
0000 0210 0210
11 05 07
_| I w1
Al Al

As shown in the diagram above, instruction lines can branch apart and they can
join back together. The short vertical pairs of lines are called conditions . Condi-
tions without diagonal lines through them are called normally open conditions
and correspond to a LOAD, AND, or OR instruction. The conditions with diago-
nal lines through them are called normally closed conditions and correspond
to a LOAD NOT, AND NOT, or OR NOT instruction. The number above each
condition indicates the operand bit for the instruction. It is the status of the bit
associated with each condition that determines the execution condition for fol-
lowing instructions. Only these conditions and a limited number of intermediate
instructions can appear along the instruction lines. All other instructions must
appear next to the right bus bar. Instructions that appear next to the right bus bar
are called right-hand instructions

The way the operation of each of the instructions corresponds to a condition is
described below. Before we consider these, however, there are some basic
terms that must be explained.

Each condition in a ladder diagram is either ON or OFF depending on the status
of the operand bit that has been assigned to it. A normally open condition is ON if
the operand bit is ON; OFF if the operand bit is OFF. A normally closed condition
is ON if the operand bit is OFF; OFF if the operand bit is ON. Generally speaking,
you use a hormally open condition when you want something to happen when a
bit is ON, and a normally closed condition when you want something to happen
when a bit is OFF.

Instruction Instruction is executed when

11
LAl
0000 Norm_a_llly open
00 condition
Y4
Al

CIO bit 00000 is ON.

Instruction Instruction is executed when

condition

Normally closed

CIO bit 00000 is OFF.

75

Basic Ladder Diagrams

Section 4-3

Execution Conditions

Operand Bits

Logic Blocks

Block Programming

In ladder diagram programming, the logical combination of ON and OFF condi-
tions before an instruction determines the compound condition under which the
instruction is executed. This condition, which is either ON or OFF, is called the
execution condition for the instruction. All instructions other than LOAD instruc-
tions have execution conditions. Execution conditions are maintained in buffers
in memory and are continuously changed by each instruction that is executed
until a LOAD or LOAD NOT instruction is used to start a new instruction line and
thus a new execution condition.

The operands designated for any of the ladder instructions can be any bit in the
data areas accessible by bit (e.g., not the DM or EM Areas). This means that the
conditions in a ladder diagram can be determined by 1/O bits, flags, work bits,
timers/counters, etc. LOAD and OUTPUT instructions can also use TR Area
bits, but they do so only in special applications. Refer to 4-5-1 TR Bits for details.

The relationship between the conditions on the instruction lines that lead to an
instruction determine the execution condition for the instruction. Any group of
conditions that go together to create an execution condition for an instruction is
called a logic block. Although ladder diagrams can be written without actually
analyzing individual logic blocks, understanding logic blocks is necessary for ef-
ficient programming and is essential when programs are to be input in mnemon-
ic code.

Version-2 CVM1 CPUs support the block programming instructions of the
C1000H and C2000H. Block programming is a form of programming that can
make it easier to program complex operations such as a series of data calcula-
tions that would be difficult to program using ladder diagrams. Creating struc-
tured programs can shorten cycle time, thereby improving overall system pro-
cessing speed.

4-3-2 Basic Mnemonic Code

Program Memory Structure

76

Programs can be input from a Peripheral Device in either graphic form (i.e., as a
ladder diagram) or in mnemonic form (i.e., as a list of code). The mnemonic code
provides exactly the same information as the ladder diagram. You can program
directly in mnemonic code, although it is not recommended for beginners or for
complex programs. Programming in mnemonic code is also necessary when a
logic block contains more than twenty instruction lines.

Because of the importance of mnemonic code in complete understanding of a
program, we will introduce and describe the mnemonic code along with ladder
diagrams.

The program is input into addresses in Program Memory. Addresses in Program
Memory are slightly different to those in other memory areas because each ad-
dress does not necessarily hold the same amount of data. Rather, each address
holds one instruction and all of the definers and operands (described in more
detail later) required for that instruction.

With a CV-series PC, instructions can require between one and eight words in
memory. The length of an instruction depends not only on the instruction, but
also on the operands used for the instruction. If an index register is addressed
directly or a data register is used as an operand, the instruction will require one
word less than when specifying a word address for the operand. If a constant is
designated for instructions that use 2-word operands, the instruction will require
one word more than when specifying a word address for the operand. The pos-
sible lengths for each instruction are provided in Section 6 Program Execution
Timing.

Program Memory addresses start at 00000 and run until the capacity of Program
Memory has been exhausted. The first word at each address defines the instruc-
tion. Any definers used by the instruction are placed on the same line of code.

Basic Ladder Diagrams

Section 4-3

Also, if an instruction requires only a single bit operand (with no definer), the bit
operand is also placed on the same line as the instruction. The rest of the words
required by an instruction contain the operands that specify what data is to be
used. All other instructions are written with the instruction on the first line fol-
lowed by the operands one to a line. An example of mnemonic code is shown
below. The instructions used in it are described later in the manual. When input-
ting programs in mnemonic form from the CVSS, most operands are separated
only by spaces. Refer to the CVSS Operation Manuals for details.

Address | Instruction |Operands

00000 LD 000000
00001 AND 000001
00002 OR 000002
00003 LD NOT 000100
00004 AND 000101

00005 AND LD 000102

00006 | MOV(030)

0000

D00000
00007 | CMP(020)

D00000

0000
00008 | LD 025505
00009 | ouT 000501
00010 | MOV(030)

D00000

D00500
00011 | DIFU(013)| 000502
00012 | AND 000005
00013 | ouT 000503

The address and instruction columns of the mnemonic code table are filled in for
the instruction word only. For all other lines, the left two columns are left blank. If
the instruction requires no definer or bit operand, the operand column is left
blank for first line. It is a good idea to cross through any blank data column
spaces (for all instruction words that do not require data) so that the data column
can be quickly scanned to see if any addresses have been left out.

When programming, addresses are automatically displayed and do not have to
be input unless for some reason a different location is desired for the instruction.
When converting to mnemonic code, it is best to start at Program Memory ad-
dress 00000 unless there is a specific reason for starting elsewhere.

4-3-3 Ladder Instructions

The ladder instructions are those instructions that correspond to the conditions
on the ladder diagram. Ladder instructions, either independently or in combina-
tion with the logic block instructions described later, form the execution condi-
tions upon which the execution of all other instructions are based.

77

Basic Ladder Diagrams

Section 4-3

LOAD and LOAD NOT

AND and AND NOT

0000
00
1
|

The first condition that starts any logic block within a ladder diagram corre-
sponds to a LOAD or LOAD NOT instruction. Each of these instructions is written
on one line of mnemonic code. “Instruction” is used as a dummy instruction in the
following examples and could be any of the right-hand instructions described lat-
er in this manual.

0880 Address | Instruction |Operands
“] ~ "1 00000 LD 000000

A LOAD instruction. 00001 Instruction
0900 00002 LD NOT 000000

}II/ - -4 00003 Instruction

A LOAD NOT instruction.

When this is the only condition on the instruction line, the execution condition for
the instruction at the right is ON when the execution condition is ON. For the
LOAD instruction (i.e., a normally open condition), an ON execution condition
would be produced when CIO 000000 was ON; for the LOAD NOT instruction
(i.e., a normally closed condition), an ON execution condition would be pro-
duced when CIO 000000 was OFF.

When two or more conditions lie in series on the same instruction line, the first
one corresponds to a LOAD or LOAD NOT instruction, and the rest of the condi-
tions correspond to AND or AND NOT instructions. The following example
shows three conditions which correspond in order from the left to a LOAD, an
AND NOT, and an AND instruction. Again, each of these instructions is written
on one line of mnemonic code.

OR and OR NOT

78

0001 0002
00 00 Address | Instruction |Operands
j,r I I Instruction

00000 LD 000000
00001 AND NOT 000100
00002 AND 000200
00003 Instruction

The instruction would have an ON execution condition only when CIO 000000
was ON, CIO 000100 was OFF, and CIO 000200 was ON.

AND instructions in series can be considered individually, with each taking the
logical AND of the execution condition produced by the preceding instruction
and the status of the AND instruction’s operand bit. If both of these are ON, an
ON execution condition will be produced for the next instruction. If either is OFF,
the resulting execution condition will also be OFF.

Each AND NOT instruction in a series would take the logical AND between the
execution condition produced by the preceding instruction and the inverse of its
operand bit.

When two or more conditions lie on separate instruction lines running in parallel
and then joining together, the first condition corresponds to a LOAD or LOAD
NOT instruction; the rest of the conditions correspond to OR or OR NOT instruc-
tions. The following example shows three conditions which correspond in order
from the top to a LOAD NOT, an OR NOT, and an OR instruction. Again, each of
these instructions requires one line of mnemonic code.

0880 Address | Instruction |Operands
W [nswueton | 55000 | LONOT | 000000
o5 00001 | ORNOT | 000100
W 00002 | OR 000200
0002 00003 Instruction

00
]l

Basic Ladder Diagrams

Section 4-3

Combining AND and OR
Instructions

0000 0000 0000 0000
00 01 02 03

The instruction at the right would have an ON execution condition when any one
of the three conditions was ON, i.e., when CIO 00000 was OFF, when CIO 00100
was OFF, or when CIO 000200 was ON.

OR and OR NOT instructions can be considered individually, each taking the
logical OR between the execution condition produced by the preceding instruc-
tions and the status of the OR instruction’s operand bit. If either one of these
were ON, an ON execution condition would be produced for the next instruction.

When AND and OR instructions are combined in more complicated diagrams,
they can sometimes be considered individually, with each instruction performing
a logic operation on the current execution condition and the status of the oper-
and bit. The following is one example. Study this example until you are con-
vinced that the mnemonic code follows the same logic flow as the ladder dia-
gram.

Address |Instruction Operands

o e e 75 Instruction 00000 | LD 000000
%867 00001 | AND 000001
p— 00002 | OR 000200
00003 | AND 000002

00004 AND NOT | 000003
00005 Instruction

Here, an AND is taken between the status of CIO 000000 and that of
CIO 000001 to determine the execution condition for an OR with the status of
CIO 000200. The result of this operation determines the execution condition for
an AND with the status of CIO 000002, which in turn determines the execution
condition for an AND with the inverse (i.e., and AND NOT) of the status of
CI1O 000003.

In more complicated diagrams, it is necessary to consider logic blocks before an
execution condition can be determined for the final instruction, and that's where
AND LOAD and OR LOAD instructions are used. Before we consider more com-
plicated diagrams, however, we'll look at the instructions required to complete a
simple “input-output” program.

4-3-4 OUTPUT and OUTPUT NOT

The simplest way to output the results of combining execution conditions is to
output it directly with the OUTPUT and OUTPUT NOT. These instructions are
used to control the status of the designated operand bit according to the execu-
tion condition. With the OUTPUT instruction, the operand bit will be turned ON
as long as the execution condition is ON and will be turned OFF as long as the
execution condition is OFF. With the OUTPUT NOT instruction, the operand bit
will be turned ON as long as the execution condition is OFF and turned OFF as
long as the execution condition is ON. These appear as shown below. In mne-
monic code, each of these instructions requires one line.

%88° 0802 Address | Instruction Operands
: : O_ 00000 LD 000000
08(1)0 08(1)2 00001 ouT 000200
: : Address | Instruction Operands
00000 LD 000001
00001 OUT NOT 000201

79

Mnemonic Code

Section 4-4

In the above examples, CIO 000200 will be ON as long as CIO 000000 is ON and
CI0O 000201 will be ON as long as CIO 000001 is OFF. Here, CIO 000000 and
CI10 000001 would be input bits and CIO 000200 and CIO 000201 output bits
assigned to the Units controlled by the PC, i.e., the signals coming in through the
input points assigned CIO 000000 and CIO 000001 are controlling the output
points to which CIO 000200 and CIO 000201 are allocated.

The length of time that a bit is ON or OFF can be controlled by combining the
OUTPUT or OUTPUT NOT instruction with Timer instructions. Refer to Exam-
ples under 5-13-1 Timer — TIM for details.

4-3-5 The END Instruction

The last instruction required to complete any program is the END instruction.
When the CPU scans a program, it executes all instructions up to the first END
instruction before returning to the beginning of the program and beginning
execution again. Although an END instruction can be placed at any point in a
program, which is sometimes done when debugging, no instructions past the
first END instruction will be executed. The number following the END instruction
in the mnemonic code is its function code, which is used when inputting most
instructions into the PC. Function codes are described in more detail later. The
END instruction requires no operands and no conditions can be placed on the
instruction line with it.

0880 0830 Address | Instruction |Operands
I }f Instruction 00500 LD 000000
00501 AND NOT | 000001

Program 00502 Instruction

execution [0p503 | END(001)

ends here.

If there is no END instruction anywhere in a program, the program will not be
executed at all.

4-4 Mnemonic Code

4-4-1 Logic Block Instructions

80

Logic block instructions do not correspond to specific conditions on the ladder
diagram; rather, they describe relationships between logic blocks. Each logic
block is started with a LOAD or LOAD NOT instruction. Whenever a LOAD or
LOAD NOT instruction is executed, a new execution condition is created and the
previous execution condition is stored in a buffer. The AND LOAD instruction
logically ANDs the execution conditions produced by two logic blocks, i.e., gen-
eral speaking, it ANDs the current execution condition with the last execution
condition stored in a buffer. The OR LOAD instruction logically ORs the execu-
tion conditions produced by two logic blocks.

Mnemonic Code

Section 4-4

AND LOAD Although simple in appearance, the diagram below requires an AND LOAD
instruction.
R .
o5 oo
I} . I . Instruction Address | Instruction |[Operands
\ 0000 1 0000 , 00000 | LD 000000
i -y 00001 [OR 000001
C cA 00002 | LD 000002
00003 | ORNOT | 000003
00004 | ANDLD

The two logic blocks are indicated by dotted lines. Studying this example shows
that an ON execution condition will be produced when: either of the conditions in
the left logic block is ON (i.e., when either CIO 000000 or CIO 000001 is ON) and
either of the conditions in the right logic block is ON (i.e., when either
CIO 000002 is ON or CIO 000003 is OFF).

The above ladder diagram cannot be converted to mnemonic code using AND
and OR instructions alone. If an AND between CIO 000002 and the results of an
OR between CIO 000000 and CIO 000001 is attempted, the OR NOT between
CI0O 000002 and CIO 000003 is lost and the OR NOT ends up being an OR NOT
between just CIO 000003 and the result of an AND between CIO 000002 and the
first OR. What we need is a way to do the OR (NOT)'’s independently and then
combine the results.

To do this, we can use the LOAD or LOAD NOT instruction in the middle of an
instruction line. When LOAD or LOAD NOT is executed in this way, the current
execution condition is saved in special buffers and the logic process is begun
over. To combine the results of the current execution condition with that of a pre-
vious “unused” execution condition, an AND LOAD or an OR LOAD instruction is
used. Here “LOAD” refers to loading the last unused execution condition. An un-
used execution condition is produced by using the LOAD or LOAD NOT instruc-
tion for any but the first condition on an instruction line.

Analyzing the above ladder diagram in terms of mnemonic instructions, the
condition for CIO 000000 is a LOAD instruction and the condition below it is an
OR instruction between the status of CIO 000000 and that of CIO 000001. The
condition at CIO 000002 is another LOAD instruction and the condition below is
an OR NOT instruction, i.e., an OR between the status of CIO 000002 and the
inverse of the status of CIO 000003. To arrive at the execution condition for the
instruction at the right, the logical AND of the execution conditions resulting from
these two blocks would have to be taken. AND LOAD does this. The mnemonic
code for the ladder diagram is shown to the right of the diagram. The AND LOAD
instruction requires no operands of its own, because it operates on previously
determined execution conditions. Here too, dashes are used to indicate that no
operands needs designated or input.

81

Mnemonic Code

Section 4-4

OR LOAD

The following diagram requires an OR LOAD instruction between the top logic
block and the bottom logic block. An ON execution condition would be produced
for the instruction at the right either when CIO 000000 is ON and CIO 000001 is
OFF or when CIO 000002 and CIO 000003 are both ON. The operation of and
mnemonic code for the OR LOAD instruction is exactly the same as those for a
AND LOAD instruction except that the current execution condition is ORed with
the last unused execution condition.

1 0000 0000 .:
' 00 01 .
11 1 | - Address | Instruction | Operands
11 1 nstruction
tzzzzzzzz-z:z-z-:zxg 00000 LD 000000
198%° %3 ! 00001 | AND 000001
al H— 00002 | LD 000002
"""""" 00003 | ANDNOT | 000003
00004 OR LD

Logic Block Instructions in

Series

82

Naturally, some diagrams will require both AND LOAD and OR LOAD instruc-
tions.

To code diagrams with logic block instructions in series, the diagram must be
divided into logic blocks. Each block is coded using a LOAD instruction to code
the first condition, and then AND LOAD or OR LOAD is used to logically combine
the blocks. With both AND LOAD and OR LOAD there are two ways to achieve
this. One is to code the logic block instruction after the first two blocks and then
after each additional block. The other is to code all of the blocks to be combined,
starting each block with LOAD or LOAD NOT, and then to code the logic block
instructions which combine them. In this case, the instructions for the last pair of
blocks should be combined first, and then each preceding block should be com-
bined, working progressively back to the first block. Although either of these
methods will produce exactly the same result, the second method, that of coding
all logic block instructions together, can be used only if eight or fewer blocks are
being combined, i.e., if seven or fewer logic block instructions are required.

The following diagram requires AND LOAD to be converted to mnemonic code
because three pairs of parallel conditions lie in series. The two means of coding
the programs are also shown.

0880 08(2)0 0820 0885 Address | Instruction |Operands
: : J',f i | 00000 LD 000000
0000 0000 0000 00001 OR NOT 000001
?ly ?? ?TJ 00002 LD NOT 000002
" ! 00003 | OR 000003
00004 AND LD
00005 LD 000004
00006 OR 000005
00007 AND LD
00008 ouT 000500

Address | Instruction |Operands
00000 LD 000000
00001 OR NOT 000001
00002 LD NOT 000002

00003 OR 000003
00004 LD 000004
00005 OR 000005

00006 AND LD
00007 AND LD ---
00008 ouT 000500

Mnemonic Code

Section 4-4

Again, with the second method, a maximum of eight blocks can be combined.
There is no limit to the number of blocks that can be combined with the first meth-
od.

The following diagram requires OR LOAD instructions to be converted to mne-
monic code because three pairs of conditions in series lie in parallel to each oth-

er.

Combining AND LOAD and

OR LOAD

Address | Instruction |Operands
0900 0000 0905 00000 | LD 000000
| —3F O— 00001 [AND NOT 000001
oggo 08(3)0 00002 LD NOT 000002
}1'/ }r 00003 AND NOT 000003
0000 0000 00004 OR LD —
E"I‘_ﬁ 00005 | LD 000004
00006 AND 000005
00007 OR LD —
00008 ouT 000501
Address | Instruction |Operands
00000 LD 000000
00001 AND NOT 000001
00002 LD NOT 000002
00003 AND NOT 000003
00004 LD 000004
00005 AND 000005
00006 OR LD —
00007 OR LD —
00008 ouT 000501

The first of each pair of conditions is converted to LOAD with the assigned bit
operand and then ANDed with the other condition. The first two blocks can be
coded first, followed by OR LOAD, the last block, and another OR LOAD, or the
three blocks can be coded first followed by two OR LOADs. The mnemonic code
for both methods is shown to the right of the ladder diagram.

Again, with the second method, a maximum of eight blocks can be combined.
There is no limit to the number of blocks that can be combined with the first meth-
od.

Both of the coding methods described above can also be used when using AND
LOAD and OR LOAD, as long as the number of blocks being combined does not
exceed eight.

The following diagram contains only two logic blocks as shown. It is not neces-
sary to further separate block b components, because it can be coded directly
using only AND and OR.

0000 0000 0000 00(3)0 0005
?? ?ly ?2 0. P Address | Instruction | Operands
L g I O—
0002 00000 LD 000000
o 00001 AND NOT | 000001
o000 00002 LD 000002
04 00003 AND 000003
11
1 00004 OR 000201
00005 OR 000004
Block Block
I‘i a 4+— b —’l 00006 AND LD —
00007 ouT 000501

83

Mnemonic Code

Section 4-4

|<—B'°°k——| Address | Instruction |Operands

Although the following diagram is similar to the one above, block b in the diagram
below cannot be coded without separating it into two blocks combined with OR
LOAD. In this example, the three blocks have been coded first and then OR
LOAD has been used to combine the last two blocks followed by AND LOAD to
combine the execution condition produced by the OR LOAD with the execution
condition of block a.

When coding the logic block instructions together at the end of the logic blocks
they are combining, they must, as shown below, be coded in reverse order, i.e.,
the logic block instruction for the last two blocks is coded first, followed by the
one to combine the execution condition resulting from the first logic block
instruction and the execution condition of the logic block third from the end, and
on back to the first logic block that is being combined.

0880 08(1)0 oooo oooo 08(2)5 00000 LD NOT 000000

|)4 11 |y 00001 AND 000001
Al] I I Al

0000 0002 00002 [LD 000002

o4 02 00003 AND NOT | 000003

:| I I 00004 LD NOT 000004

| Block | 00005 AND 000202
00006 OR LD —
Block Block
|‘_ a _’l‘_ b _’l 00008 ouT 000502

Complicated Diagrams

s b

00007 AND LD —

When determining what logic block instructions will be required to code a dia-
gram, it is sometimes necessary to break the diagram into large blocks and then
continue breaking the large blocks down until logic blocks that can be coded
without logic block instructions have been formed. These blocks are then coded,
combining the small blocks first, and then combining the larger blocks. Either
AND LOAD or OR LOAD is used to combine the blocks, i.e., AND LOAD or OR
LOAD always combines the last two execution conditions that existed, regard-
less of whether the execution conditions resulted from a single condition, from
logic blocks, or from previous logic block instructions.

When working with complicated diagrams, blocks will ultimately be coded start-
ing at the top left and moving down before moving across. This will generally
mean that, when there might be a choice, OR LOAD will be coded before AND
LOAD.

The following diagram must be broken down into two blocks and each of these
then broken into two blocks before it can be coded. As shown below, blocks a
and b require an AND LOAD. Before AND LOAD can be used, however, OR
LOAD must be used to combine the top and bottom blocks on both sides, i.e., to
combine al and a2; bl and b2.

Address | Instruction |Operands

84

oooo oooo oooo oooo 0885 00000 D 500000
I I I V
| —H | |—|. 00001 | AND NOT | 000001
0000 0000 0000 0002 00002 LD NOT 000002
o o Y I 00003 AND 000003
I I/ I I |
1
Block Block 00004 ORLD — Blocks al and a2
°°—.| |¢_ oc ——| 00005 | LD 000004
00006 AND 000005

| Iock | Block | 00007 LD 000006
00008 AND 000007

00009 OR LD — Blocks bl and b2
00010 AND LD — Blocks a and b
00011 ouT 000503

Mnemonic Code Section 4-4

The following type of diagram can be coded easily if each block is coded in order:
first top to bottom and then left to right. In the following diagram, blocks a and b
would be combined using AND LOAD as shown above, and then block ¢ would
be coded and a second AND LOAD would be used to combined it with the execu-
tion condition from the first AND LOAD. Then block d would be coded, a third
AND LOAD would be used to combine the execution condition from block d with
the execution condition from the second AND LOAD, and so on through to

block n.
A b - E|—| ¢
- i o

Block Block Block | _ ____ Block
a b c - n

The following diagram requires an OR LOAD followed by an AND LOAD to code
the top of the three blocks, and then two more OR LOADSs to complete the mne-

monic code.
0880 08(1)0 0882 Address | Instruction |Operands
ml {1 O— 00000 | LD 000000
0990 0ggo 00001 LD 000001
—F 00002 LD 000002
08910 08(5)0 00003 AND NOT 000003
2 | S 00004 OR LD —
0000 0000 00005 AND LD —
06 o7 00006 LD NOT 000004
KU | m— 00007 | AND 000005

00008 OR LD —
00009 LD NOT 000006

00010 AND 000007
00011 OR LD —
00012 ouT 000200

Although the program will execute as written, this diagram could be drawn as
shown below to eliminate the need for the first OR LOAD and the AND LOAD,
simplifying the program and saving memory space.

Address | Instruction |Operands

0990 0090 0900 0002 00000 LD 000002
| F—3F i} O— 00001 [AND NOT | 000003
0900 00002 | OR 000001
T 00003 | AND 000000
0000 0000 00004 LD NOT 000004
oy ” 00005 | AND 000005
o 0000 00006 | ORLD —
* o 00007 | LDNOT [000006
Al " 00008 AND 000007
00009 | ORLD —
00010 | ouTt 000200

85

Mnemonic Code Section 4-4

The following diagram requires five blocks, which here are coded in order before
using OR LOAD and AND LOAD to combine them starting from the last two
blocks and working backward. The OR LOAD at program address 00008 com-
bines blocks blocks d and e, the following AND LOAD combines the resulting
execution condition with that of block c, etc.

000 0900 0990 0002 Address | Instruction |Operands
: : |—| : O— 00000 LD 000000
Block _.| 00001 LD 000001
Blocka b 00002 AND 000002
00003 LD 000003
|'_ Block _'l |'_ B'Z““‘I 00004 | AND 000004
[+

0000 0000 0000 00005 LD 000005
<|J3 0‘: ?f 00006 LD 000006
1 | | I] 00007 AND 000007

% %8 00008 | ORLD —

|—| |— Blocks d and e 00009 AND LD —

|._ Block—-l Block c with result of above 00010 OR LD J—

e Block b with result of above 00011 AND LD —
Block a with result of above 00012 ouT 000200

Again, this diagram can be redrawn as follows to simplify program structure and
coding and to save memory space.

0880 08(7)0 0880 0820 0880 0882 Address | Instruction |Operands
{ I { I {1 O— 00000 | LD 000006
0900 00001 | AND 000007
I 00002 OR 000005
08(1)0 08(2)0 00003 AND 000003
1 I 00004 AND 000004
" " 00005 | LD 000001
00006 AND 000002

00007 OR LD —
00008 AND 000000
00009 ouT 000200

The next and final example may at first appear very complicated but can be
coded using only two logic block instructions. The diagram appears as follows:

........ ‘/Blocka mmm e ==y
)]
, 0000 0000 0000 0000 , 0000 0000 ' 0005
00 01 ' 02 03 , 04 05 ! 00
| I I 1 ! | I I F I I I I ! O
N | | ' | \ '
------- 1 '
)
, 0010 0010 | , 0000 .
, 00 01 , 06
] 11)
'|‘ b Ll '\
.............. -
0005 \ Block b Block ¢
00
11
Ll

86

Branching Instruction Lines

Section 4-5

Block a

The first logic block instruction is used to combine the execution conditions re-
sulting from blocks a and b, and the second one is to combine the execution
condition of block ¢ with the execution condition resulting from the normally
closed condition assigned CIO 000003. The rest of the diagram can be coded
with OR, AND, and AND NOT instructions. The logical flow for this and the re-
sulting code are shown below.

Block b

000000 000001 001000 001001

LD 000000 LD 001000 Address | Instruction |Operands
AND 000001 AND 001001
| | 00000 LD 000000
OR LD 00001 | AND 000001
l 00002 LD 001000
Block ¢ 00003 | AND 001001
000500 000004 000005 00004 OR LD J—
I I I I I I 00005 OR 000500
LD 000004
OR 000500 ARD BO0DOE 00006 AND 000002
00007 AND NOT | 000003
000002 000003 000006 00008 LD 000004
00009 AND 000005
AND 000002
AND 000005 OR 000006 00010 OR 000006
00011 AND LD —
| AND LD I 00012 ouT 000500

000500

4-4-2 Coding Multiple Right-hand Instructions

If there is more than one right-hand instruction executed with the same execu-
tion condition, they are coded consecutively following the last condition on the
instruction line. In the following example, the last instruction line contains one
more condition that corresponds to an AND with CIO 000400.

4-5 Branching Instruction Lines

0880 oggo 08(130 Address | Instruction |Operands
I I O— 00000 | LD 000000
0000 0005 00001 OR 000001
E’E Ooo 00002 | OR 000002
4000 0004 o005 00003 | OR 000200
02 9 06 00004 AND 000003
T I O 00005 | OUT 000001
9867 00006 | ouT 000500
i} 00007 | AND 000400
00008 | ouT 000506

When an instruction line branches into two or more lines, it is sometimes neces-
sary to use either interlocks or TR bits to maintain the execution condition that
existed at a branching point. This is because instruction lines are executed
across to a right-hand instruction before returning to the branching point to
execute instructions one a branch line. If a condition exists on any of the instruc-
tion lines after the branching point, the execution condition could change during
this time making proper execution impossible. The following diagrams illustrate

87

Branching Instruction Lines Section 4-5

oooo Branching
o

this. In both diagrams, instruction 1 is executed before returning to the branching
point and moving on to the branch line leading to instruction 2.

Hi

point Address | Instruction |Operands
nstructon * 00000 |LD 000000

0820 00001 |Instruction 1
1 Instruction 2 00002 |AND 000002

oooo Branching

point

Diagram A: Correct Operation

0000
01
]l

00003 |Instruction 2

Instruction 1

Hi

0000
02

Address | Instruction |Operands
Instruction 2 00000 |LD 000000

4-5-1 TR Bits

88

Diagram B: Incorrect Operation 00002 |Instruction 1

Note

0000
01
11

gl

00001 [AND 000001

00003 |AND 000002
00004 _[Instruction 2

If, as shown in diagram A, the execution condition that existed at the branching
point cannot be changed before returning to the branch line (instructions at the
far right do not change the execution condition), then the branch line will be
executed correctly and no special programming measure is required.

If, as shown in diagram B, a condition exists between the branching point and the
last instruction on the top instruction line, the execution condition at the branch-
ing point and the execution condition after completing the top instruction line will
sometimes be different, making it impossible to ensure correct execution of the
branch line.

There are two means of programming branching programs to preserve the
execution condition. One is to use TR bits; the other, to use interlocks
(IL(002)/ILC(003)).

The TR area provides eight bits, TRO through TR7, that can be used to tempo-
rarily preserve execution conditions. If a TR bit is placed at a branching point, the
current execution condition will be stored at the designated TR bit. When return-
ing to the branching point, the TR bit restores the execution status that was
saved when the branching point was first reached in program execution.

When programming in graphic ladder diagram form from the CVSS, it is not nec-
essary to input TR bits and none will appear on the screen. The CVSS will auto-
matically process TR bits for you as required and input them into the program.
You will have to input TR bit when programming in mnemonic form.

The previous diagram B can be written as shown below to ensure correct execu-
tion. In mnemonic code, the execution condition is stored at the branching point
using the TR bit as the operand of the OUTPUT instruction. This execution
condition is then restored after executing the right-hand instruction by using the
same TR bit as the operand of a LOAD instruction

Address | Instruction |Operands

Instruction 1

A
0000
02
11

00000 |LD 000000
00001 |[OuUT TRO

Diagram B: Corrected Using a TR bit 00003 | Instruction 1

Instruction 2 00002 AND 000001

00004 |LD TRO
00005 | AND 000002
00006 | Instruction 2

Branching Instruction Lines Section 4-5

0000
0

In terms of actual instructions the above diagram would be as follows: The status
of CIO 000000 is loaded (a LOAD instruction) to establish the initial execution
condition. This execution condition is then output using an OUTPUT instruction
to TRO to store the execution condition at the branching point. The execution
condition is then ANDed with the status of CIO 000001 and instruction 1 is
executed accordingly. The execution condition that was stored at the branching
point is then re-loaded (a LOAD instruction with TRO as the operand), this is
ANDed with the status of CIO 000002, and instruction 2 is executed accordingly.

The following example shows an application using two TR bits.

0000 0000 0005 Address | Instruction |Operands
0 @ I @ ” P 00000 | LD 000000
L 1L 11 CD
! " . 0000 o) 0
og00 ogos 1 uT TR
o3 00002 AND 000001
I O 00003 ouT TR1
0000 0005
04 02 00004 AND 000002
{1 O— [Tooo0s | out 000500
0990 0995 00006 LD TR1
(P4
1 O— 00007 AND 000003
00008 ouT 000501
00009 LD TRO
00010 AND 000004
00011 ouT 000502
00012 LD TRO
00013 AND NOT | 000005
00014 ouT 000503

In this example, TRO and TR1 are used to store the execution conditions at the
branching points. After executing instruction 1, the execution condition stored in
TR1 is loaded for an AND with the status CIO 000003. The execution condition
stored in TRO is loaded twice, the first time for an AND with the status of
CIO 000004 and the second time for an AND with the inverse of the status of
CIO 000005.

TR bits can be used as many times as required as long as the same TR bit is not
used more than once in the same instruction block. A new instruction block is
begun each time execution returns to the bus bar. If, in a single instruction block,
it is necessary to have more than eight branching points that require the execu-
tion condition be saved, interlocks (which are described next) must be used.

When drawing a ladder diagram, be careful not to use TR bits unless necessary.
Often the number of instructions required for a program can be reduced and
ease of understanding a program increased by redrawing a diagram that would
otherwise required TR bits. In both of the following pairs of diagrams, the bottom
versions require fewer instructions and do not require TR bits. In the first exam-
ple, this is achieved by reorganizing the parts of the instruction block: the bottom
one, by separating the second OUTPUT instruction and using another LOAD
instruction to create the proper execution condition for it.

89

Branching Instruction Lines Section 4-5

4-5-2

90

Interlocks

Note Although simplifying programs is always a concern, the order of execution of

instructions is sometimes important. For example, a MOVE instruction may be
required before the execution of a BINARY ADD instruction to place the proper
data in the required operand word. Be sure that you have considered execution
order before reorganizing a program to simplify it.

0000 0000
00 1

I 11 Instruction 1

Instruction 2

0000

R

I Instruction 2
0000
01
: : Instruction 1
0000 0000
00 03
L 1 ;
I 11 Instruction 1
0000 0000
01 02
L)
| Al

11 Instruction 2

0000 0000 ' 0000
01 02 03

I v di 11 Instruction 1
0000
ol

0000 0000
01 04

I 11 Instruction 2

Iy

The problem of storing execution conditions at branching points can also be
handled by using the INTERLOCK (IL(002)) and INTERLOCK CLEAR
(ILC(003)) instructions to eliminate the branching point completely while allow-
ing a specific execution condition to control a group of instructions. The INTER-
LOCK and INTERLOCK CLEAR instructions are always used together.

When an INTERLOCK instruction is placed before a section of a ladder pro-
gram, the execution condition for the INTERLOCK instruction will control the
execution of all instruction up to the next INTERLOCK CLEAR instruction. If the
execution condition for the INTERLOCK instruction is OFF, all right-hand
instructions through the next INTERLOCK CLEAR instruction will be executed
with OFF execution conditions to reset the entire section of the ladder diagram.
The effect that this has on particular instructions is described in 5-8 INTERLOCK
and INTERLOCK CLEAR — IL(002) and ILC(003).

Branching Instruction Lines

Section 4-5

Diagram B can also be corrected with an interlock. Here, the conditions leading
up to the branching point are placed on an instruction line for the INTERLOCK
instruction, all of lines leading from the branching point are written as separate
instruction lines, and another instruction line is added for the INTERLOCK
CLEAR instruction. No conditions are allowed on the instruction line for INTER-
LOCK CLEAR. INTERLOCK and INTERLOCK CLEAR does not use operands.

L I(Looz) Address | Instruction |Operands
00000 (LD 000000
@_ 00001 [IL(002)
00002 (LD 000001
- 00003 [Instruction 1
@'— 00004 (LD 000002
(003) 00005 |[Instruction 2
{ itc 00006 |ILC(003)

If CIO 000000 is ON in the revised version of diagram B, above, the status of
CIO 000001 and that of CIO 000002 would determine the execution conditions
for instructions 1 and 2, respectively. Because CIO 000000 is ON, this would
produce the same results as ANDing the status of each of these bits. If
CIO 000000 is OFF, the INTERLOCK instruction would produce an OFF execu-
tion condition for instructions 1 and 2 and then execution would continue with the
instruction line following the INTERLOCK CLEAR instruction.

As shown below, multiple INTERLOCK instructions can be used in one instruc-
tion block; each is effective through the next INTERLOCK CLEAR instruction.

0000
<|J(|J - (002) Address | Instruction |Operands
I
0:)(')0 L 00000 (LD 000000
o1 00001 [IL(002)
{| { Instruction 1 |— 00002 |LD 000001
0990 002) 00003 |Instruction 1
: : [00004 |LD 000002
oggo 0820 00005 |IL(002)
I " :l,nsmion > 00006 [LD 000003
0000 00007 [AND NOT 000004
05 _ 00008 |Instruction 2
o:)(l)o 00009 (LD 000005
06 00010 |Instruction 3
11 i
11 : Instruction 4 |— 00011 [LD 000006
(003) 00012 |Instruction 4
[Lc }— 00013 [ILC(003)

If CIO 000000 in the above diagram is OFF (i.e., if the execution condition for the
first INTERLOCK instruction is OFF), instructions 1 through 4 would be
executed with OFF execution conditions and execution would move to the
instruction following the INTERLOCK CLEAR instruction. If CIO 000000 is ON,
the status of CIO 000001 would be loaded as the execution condition for instruc-
tion 1 and then the status of CIO 000002 would be loaded to form the execution
condition for the second INTERLOCK instruction. If CIO 000002 is OFF, instruc-
tions 2 through 4 will be executed with OFF execution conditions. If CIO 000002
is ON, CIO 000003, CIO 000005, and CIO 000006 will determine the first execu-
tion condition in new instruction lines.

91

Jumps

Section 4-6

4-6 Jumps

0000
00

A specific section of a program can be skipped according to a designated execu-
tion condition. Although this is similar to what happens when the execution
condition for an INTERLOCK instruction is OFF, with jumps, the operands for all
instructions maintain status. Jumps can therefore be used to control devices
that require a sustained output, e.g., pneumatics and hydraulics, whereas inter-
locks can be used to control devices that do not required a sustained output,
e.g., electronic instruments.

Jumps are created using the JUMP (JMP(004)) and JUMP END (JME(005))
instructions. If the execution condition for a JUMP instruction is ON, the program
is executed normally as if the jump did not exist. If the execution condition for the
JUMP instruction is OFF, program execution moves immediately to a JUMP
END instruction without changing the status of anything between the JUMP and
JUMP END instruction.

All JUMP and JUMP END instructions are assigned jump numbers ranging be-
tween 0000 and 0999. A jump can be defined once using any of the jump num-
bers 0000 through 0999. When a JUMP instruction assigned one of these hum-
bers is executed, execution moves immediately to the JUMP END instruction
that has the same number as if all of the instruction between them did not exist.
The JUMP END instruction may be either before or after the JUMP instruction.
Diagram B from the TR bit and interlock example could be redrawn as shown
below using a jump. Although 0001 has been used as the jump number, any
number between 0001 and 0999 could be used. JUMP and JUMP END require
no other operand and JUMP END never has conditions on the instruction line
leading to it.

Address | Instruction |Operands

0000
01

(004)

-

L omp #0001 J— 00000 |LD 000000
00001 |JMP(004) #0001

0000
02

: Instruction 1 |— 00002 LD 000001

00003 |Instruction 1

: Instruction 2 |_ 00004 (LD 000002

00005 |Instruction 2
00006 |JME(005) #0001

- (005)
[omME #0001 }—

92

Diagram B: Corrected with a Jump

This version of diagram B would have a shorter execution time when 00000 was
OFF than any of the other versions.

There must be a JUMP END with the same jump number for each JUMP instruc-
tion in the program. If SFC programming is being used, the JUMP END instruc-
tion must be contained within the same action or transition program.

Controlling Bit Status

0000
00

Section 4-7

The same jump number cannot be used in more than one JUMP END instruc-
tion. If you include more than one JUMP END instruction with the same jump
number, all JUMP instructions with that jump number will jump to the first JUMP
END instruction in the program with the same jump number. An exception to this
is when jump number 0000 is set for multiple usage in the PC Setup (see follow-
ing explanation and page 499). The same jump number can be used in more
than one JUMP instruction to jump to the same destination in the program. The
following example illustrates a program with two jumps to the same destination.

Address | Instruction |Operands

- (009
[omP #0001 J—

0000
01

00000 |LD 000000
00001 |JMP(004) #0001

0000
02

: Instruction 1 |— 00002 |LD 000001

(004) 00003 |Instruction 1
[omP #0001 }— 00004 |LD 000002

0000
03

0000
04

LK

00005 |JMP(004) #0001

0000
05

Al

: Instruction 2 |— 00006 LD 000003

00007 |AND NOT 000004

0000
06

:l_ 00008 |Instruction 2
Instruction 3
00009 |LD 000005

00010 |Instruction 3

{ Instruction 4 |— 00011 |LD 000006

(005) 00012 |Instruction 4
{ IME #0001 J}— 00013 |JME(005) #0001

JUMP 0000

&Caution

Note

Because instructions are not examined when jumps are made in the program,
differentiated outputs can remain ON for more than one cycle if programmed
within the area of the program that is jumped.

The PC Setup can be used to control the operation of jumps created using jump
number 0000. If multiple jumps with 0000 are disabled, jumps created with 0000
will operate as described above. If multiple jumps are enabled, any JMP 0000
instruction will jump to the next JME 0000 in the program (and not the first
JME 0000 in the program). When multiple jumps for 0000 are enabled, you can-
not overlap or nest the jumps, i.e., each JMP 0000 must be followed by a
JME 0000 before the next JMP 0000 in the program and each JME 0000 must
be followed by a JMP 0000 before the next JME 0000 in the program.

Version-2 CVM1 CPUs also support the CIP(221) and CIPN(222) jump instruc-
tions that can also be used to create jumps in programs. Refer to Section 5
Instruction Set for details.

4-7 Controlling Bit Status

There are instructions that can be used generally to control individual bit status.
These include the OUTPUT, OUTPUT NOT, DIFFERENTIATE UP, DIFFER-
ENTIATE DOWN, SET, RESET and KEEP instructions. All of these instructions
appear as the rightmost instruction in an instruction line and take a bit address
for an operand. Although details are provided in 5-7 Bit Control Instructions,
these instructions (except for OUTPUT and OUTPUT NOT, which have already
been introduced) are described here because of their importance in most pro-
grams. Although these instructions are used to turn ON and OFF output bits in
the 1/0 Memory (i.e., to send or stop output signals to external devices), they are
also used to control the status of other bits in the I/O memory or in other data
areas.

93

Controlling Bit Status

Section 4-7

4-7-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN

DIFFERENTIATE UP and DIFFERENTIATE DOWN instructions are used to
turn the operand bit ON for one scan at a time. The DIFFERENTIATE UP instruc-
tion turns ON the operand bit for one scan after the execution condition for it
goes from OFF to ON; the DIFFERENTIATE DOWN instruction turns ON the op-
erand bit for one scan after the execution condition for it goes from ON to OFF.
Both of these instructions require only one line of mnemonic code.

%" (©013) Address | Instruction | Operands
Il r

1l L DIFU 000200 00000 | LD 000000
%" 014 00001 | DIFU(013) | 000200
i} { DIFD 000200 00002 | LD 000001

Note

00003 DIFD(014) | 000200

Here, CIO 000200 will be turned ON for one scan after CIO 000000 goes ON.
The next time DIFU(013) 000200 is executed, CIO 000200 will be turned OFF,
regardless of the status of CIO 000000. With the DIFFERENTIATE DOWN
instruction, CIO 000200 will be turned ON for one scan after CIO 000001 goes
OFF (CIO 000200 will be kept OFF until then), and will be turned OFF the next
time DIFD(014) 000200 is executed.

Version-2 CVM1 CPUs also provide UP(018) and DOWN(019) that can be used
to differentiate changes in the execution condition to control execution. Refer to
Section 5 Instruction Set for details.

4-7-2 SET and RESET

SET and RESET instructions are used to control the status of the operand bit
while the execution condition for them is ON. When the execution condition is
OFF, the status of the operand bit will not be changed.

4-7-3 KEEP

94

(015) Address | Instruction Operands

{ SET 000200 }— 00000 | LD 000000
00001 | SET(015) 000200

Eé‘élEﬁT) 000201 F— 00002 | LD 000001
00003 | RSET(016) | 000201

In the above example, CIO 000200 will be turned ON when CIO 000000 goes
ON and will remain ON even after CIO 00000 goes OFF unless turned OFF
somewhere else in the program. CIO 000201 will be turned OFF when
CIO 000001 goes ON and will remain OFF even after CIO 00000 goes OFF un-
less turned ON somewhere else in the program.

The KEEP instruction is used to maintain the status of the operand bit based on
two execution conditions. To do this, the KEEP instruction is connected to two
instruction lines. When the execution condition at the end of the first instruction
line is ON, the operand bit of the KEEP instruction is turned ON. When the
execution condition at the end of the second instruction line is ON, the operand
bit of the KEEP instruction is turned OFF. The operand bit for the KEEP instruc-
tion will maintain its ON or OFF status even if it is located in an interlocked sec-
tion of the diagram.

Controlling Bit Status

Section 4-7

In the following example, CIO 000200 will be turned ON when CIO 000002 is ON
and CIO 000003 is OFF. CIO 000200 will then remain ON until either CIO
000004 or CIO 000005 turns ON. With KEEP, as with all instructions requiring
more than one instruction line, the instruction lines are coded first before the
instruction that they control.

0000 0000
02 03 (011) X
: : } r _ [KEEP 000200 } Address | Instruction |Operands

0000 S: set input 00000 LD 000002
o 00001 | AND NOT | 000003
1 - -

0000 R: reset input 00002 LD 000004
ff 00003 OR 000005
1 00004 KEEP(011)] 000200

4-7-4 Self-maintaining Bits (Seal)

Although the KEEP instruction can be used to create self-maintaining bits, it is
sometimes necessary to create self-maintaining bits in another way so that they
can be turned OFF when in an interlocked section of a program.

To create a self-maintaining bit, the operand bit of an OUTPUT instruction is
used as a condition for the same OUTPUT instruction in an OR setup so that the
operand bit of the OUTPUT instruction will remain ON or OFF until changes oc-
cur in other bits. At least one other condition is used just before the OUTPUT
instruction to function as a reset. Without this reset, there would be no way to
control the operand bit of the OUTPUT instruction.

The above diagram for the KEEP instruction can be rewritten as shown below.
The only difference in these diagrams would be their operation in an interlocked
program section when the execution condition for the INTERLOCK instruction
was ON. Here, just as in the same diagram using the KEEP instruction, two reset
bits are used, i.e., CIO 000200 can be turned OFF by turning ON either
CIO 000004 or CIO 000005.

0882 oggo 0820 0820 0882 Address | Instruction |Operands
: j,f j,f j,f 00000 LD 000200
00001 AND NOT 000003

0000 00002 OR 000000
°°| 00003 | AND NOT | 000004
00004 AND NOT 000005

00005 ouT 000200

95

Work Bits (Internal Relays)

Section 4-9

4-8 Intermediate Instructions

There are some instructions that can appear on instructions lines with conditions
to help determine the execution conditions for other instructions. These instruc-
tions are called intermediate instructions . Intermediate instructions cannot be
placed next to the right bus bar, only between conditions or between a condition
and a right-hand instruction. The four instructions shown below, NOT(010),
CMP(020), CMPL(021), and EQU(025), are intermediate instructions, and are
described in Section 5 Instruction Set. The input comparison instructions de-
scribed in 4-12-1 Input Comparison Instructions also intermediate instructions.

(010)
—F [NOT }——
(020)
—cmP cp1 Cp2 }——
(021)
—{cMmpPLCpr Cp2 }——
(025)

—EQU Ccp1 Cp2 }——

4-9 Work Bits (Internal Relays)

Work Bit Applications

96

In programming, combining conditions to directly produce execution conditions
is often extremely difficult. These difficulties are easily overcome, however, by
using certain bits to trigger other instructions indirectly. Such programming is
achieved by using work bits. Sometimes entire words are required for these pur-
poses. These words are referred to as work words.

Work bits are not transferred to or from the PC. They are bits selected by the
programmer to facilitate programming as described above. 1/O bits and other
dedicated bits cannot be used as works bits. All bits in the /O Memory that are
not allocated as I/O bits are available for use as work bits. Be careful to keep an
accurate record of how and where you use work bits. This helps in program plan-
ning and writing, and also aids in debugging operations.

Examples given later in this subsection show two of the most common ways

to employ work bits. These should act as a guide to the almost limitless num-
ber of ways in which the work bits can be used. Whenever difficulties arise in
programming a control action, consideration should be given to work bits and
how they might be used to simplify programming.

Work bits are often used with instructions that control bit status. The work bit is
used first as the operand for one of these instructions so that later it can be used
as a condition that will determine how other instructions will be executed. Work
bits can also be used with other instructions, e.g., with the SHIFT REGISTER
instruction (SFT(050)). An example of the use of work words and bits with the
SHIFT REGISTER instruction is provided in 5-14-1 SHIFT REGISTER -
SFT(050).

Although they are not always specifically referred to as work bits, many of the
bits used in the examples in Section 5 Instruction Set use work bits. Understand-
ing the use of these bits is essential to effective programming.

Work Bits (Internal Relays)

Section 4-9

Reducing Complex

Work bits can be used to simplify programming when a certain combination of

Conditions conditions is repeatedly used in combination with other conditions. In the follow-
ing example, CIO 000000, CIO 000001, CIO 000002, and CIO 000003 are com-
bined in a logic block that stores the resulting execution condition as the status of
C10 024600. CIO 024600 is then combined with various other conditions to de-
termine output conditions for CIO 000100, CIO 000101, and CIO 000102, i.e., to
turn the outputs allocated to these bits ON or OFF.

0000 0000 0246
O? ?1}/ 00 Address | Instruction |Operands
OO(')O Al O 00000 | LD 000000
02 00001 | ANDNOT | 000001
I 00002 OR 000002
063° 00003 | ORNOT | 000003
¥ 00004 OouT 024600
0246 0900 0900 0001 00005 LD 024600
: I ¥y O 00006 | AND 000004
3 % | P aetor o
L 1L
0000 i 00009 | LD 024600
o 00010 OR NOT 000004
7 00011 AND 000005
%6 o8 00012 | OuT 000101
1 O— 00013 | LD NOT 024600
0000 00014 OR 000006
e — 00015 OR 000007
08(7)0 00016 ouT 000102
—

Differentiated Conditions Work bits can also be used if differential treatment is necessary for some, but
not all, of the conditions required for execution of an instruction. In this exam-
ple, CIO 000100 must be left ON continuously as long as CIO 000001 is ON
and both CIO 000002 and CIO 000003 are OFF, or as long as CIO 000004 is
ON and CIO 000005 is OFF. It must be turned ON for only one scan each
time CIO 000000 turns ON (unless one of the preceding conditions is keep-
ing it ON continuously).

This action is easily programmed by using CIO 022500 as a work bit as the oper-
and of the DIFFERENTIATE UP instruction (DIFU(013)). When CIO 000000
turns ON, CIO 022500 will be turned ON for one scan and then be turned OFF
the next scan by DIFU(013). Assuming the other conditions controlling CIO
000100 are not keeping it ON, the work bit CIO 022500 will turn CIO 000100 ON
for one scan only.
0880 Address | Instruction Operands
T r QL3 137500 — 00000 | LD 000000
0225 0001 00001 DIFU(013) [022500
0 0o 00002 LD 022500
1l O 00003 LD 000001
0000 0000 0000
01 02 03 00004 | ANDNOT | 000002
— 3 00005 | AND NOT | 000003
0900 0990 00006 OR LD
i} W 00007 [LD 000004
00008 | ANDNOT | 000005

00009 OR LD ---
00010 ouT 000100

97

Programming Precautions

Section 4-10

4-10 Programming Precautions

98

The number of conditions that can be used in series or parallel is unlimited as
long as the memory capacity of the PC is not exceeded. Therefore, use as many
conditions as required to draw clear diagrams. Although very complicated dia-
grams can be drawn with instruction lines, there must not be any conditions on
lines running vertically between two other instruction lines. Diagram A shown
below, for example, is not possible, and should be drawn as diagram B. Mne-
monic code is provided for diagram B only; coding diagram A would be impossi-
ble.

0000
01

0000
00

0000
00

0000
01

oggo Address | Instruction |Operands
: J_ “ I Instruction 1 00000 (LD 000001
0000 0820 oggo 00001 | AND 000004
\ T v —_— 00002 | OR 000000
I P4
Diagram A 00003 | AND : 000002
00004 | Instruction 1
00005 |LD 000000
%4° %2° 00006 | AND 000004
} i | i | |' Instruction 1 |— 00007 | OR 000001
00008 | AND NOT 000003
: 00009 | Instruction 2
0000 0000
04 03
I “ }]l/ : Instruction 2 |—
L
: Diagram B

The number of times any particular bit can be assigned to conditions is not lim-
ited, so use them as many times as required to simplify your program. Often,
complicated programs are the result of attempts to reduce the number of times a
bit is used.

Except for instructions for which conditions are not allowed (e.g., INTERLOCK
CLEAR and JUMP END, see below), every instruction line must also have at
least one condition on it to determine the execution condition for the instruction
at the right. Again, diagram A , below, must be drawn as diagram B. If an instruc-
tion must be continuously executed (e.g., if an output must always be kept ON
while the program is being executed), the Always ON Flag (A50013) in the Auxil-
iary Area can be used.

Address | Instruction |Operands
00000 LD A50013

A500
13

Diagram A

Instruction

00001 Instruction

Instruction

Diagram B

0l

There are a few exceptions to this rule, including the INTERLOCK CLEAR,
JUMP END, and step instructions. Each of these instructions is used as the se-
cond of a pair of instructions and is controlled by the execution condition of the
first of the pair. Conditions should not be placed on the instruction lines leading to
these instructions. Refer to Section 5 Instruction Set for details.

Using Version-2 CVM1 CPUs Section 4-12

When drawing ladder diagrams, it is important to keep in mind the number of
instructions that will be required to input it. In diagram A, below, an OR LOAD
instruction will be required to combine the top and bottom instruction lines. This
can be avoided by redrawing as shown in diagram B so that no AND LOAD or OR
LOAD instructions are required. Refer to 5-6-5 AND LOAD and OR LOAD for
more details and 4-4-1 Logic Block Instructions for further examples of diagrams
requiring AND LOAD and OR LOAD.

0880 0892 Address | Instruction |Operands
_| : O— 00000 LD 000000
% %% Diagram A 00001 | LD 000001
— — 00002 | AND 000207
00003 OR LD
0000 0002 0002 00004 ouT 000207
— | O—
0900 Diagram B
—| |— Address | Instruction |Operands
00000 LD 000001
00001 AND 000207
00002 OR 000000
00003 ouT 000207

4-11 Program Execution

When execution or a ladder diagram is started, the CPU scans the program from
top to bottom, checking all conditions and executing all instructions accordingly
as it moves down the bus bar. It is important that instructions be placed in the
proper order so that, for example, the desired data is moved to a word before that
word is used as the operand for an instruction. Remember that an instruction line
is completed to the terminal instruction at the right before executing instruction
lines branching from the first instruction line to other terminal instructions at the
right.

Program execution is only one of the tasks carried out by the CPU as part of the
scan time. Refer to Section 6 Program Execution Timing for detalils.

4-12 Using Version-2 CVM1 CPUs

The most significant improvement that the version-2 CVM1 CPUs offers in com-
parison with version-1 CPUs is a greatly enhanced instruction set. This section
explains the basics that the user should be familiar with before attempting to use
the new instructions. All of these instructions can be used when the SYSMAC
Support Software and the CVM1-PRS21-EV1 Programming Console are used.
They are not supported by the CVSS or other Programming Devices.

4-12-1 Input Comparison Instructions

The version-2 CVM1 CPUs provide 24 new comparison instructions. The func-
tions of these instructions are shown as symbols, making them easy to under-
stand at a glance.

99

Using Version-2 CVM1 CPUs Section 4-12

Most of these instructions are shown with a symbol and options. When the op-
tions are not included, the instructions will handle unsigned one-word data.

Symbol Option (data format) Option (data length)
= (Equal) S (signed) L (double)
<> (Not equal)
(Less than)
<= (Less than or equal)
> (Greater than)
>= (Greater than or equal)

Unsigned input comparison instructions (i.e., instructions without the S option)
can handle unsigned binary or BCD data. Signed input comparison instructions
(i.e., instructions with the S option) can handle signed binary data. For informa-
tion concerning signed binary data, refer to 4-13 Data Formats.

The following table shows the function codes, mnemonics, and names of all of
the input comparison instructions. For details, refer to 5-16-7 Input Comparison
Instructions (300 to 328).

Code | Mnemonic Name

300 = EQUAL

301 =L DOUBLE EQUAL

302 =S SIGNED EQUAL

303 =SL DOUBLE SIGNED EQUAL

305 <> NOT EQUAL

306 <>L DOUBLE NOT EQUAL

307 <>S SIGNED NOT EQUAL

308 <>SL DOUBLE SIGNED NOT EQUAL

310 < LESS THAN

311 <L DOUBLE LESS THAN

312 <S SIGNED LESS THAN

313 <SL DOUBLE SIGNED LESS THAN

315 <= LESS THAN OR EQUAL

316 <=L DOUBLE LESS THAN OR EQUAL

317 <=S SIGNED LESS THAN OR EQUAL

318 <=SL DOUBLE SIGNED LESS THAN OR EQUAL

320 > GREATER THAN

321 >L DOUBLE GREATER THAN

322 >S SIGNED GREATER THAN

323 >SL DOUBLE SIGNED GREATER THAN

325 >= GREATER THAN OR EQUAL

326 >=L DOUBLE GREATER THAN OR EQUAL

327 >=S SIGNED GREATER THAN OR EQUAL

328 >=SL DOUBLE SIGNED GREATER THAN OR EQUAL
Features With the earlier comparison instructions, CMP(020) and CMPL(021), the com-

parison result was output to the Greater Than Flag (A50005), Equals Flag
(A50006), and Less Than Flag (A50007), and those flags then had to serve as
the input condition for subsequent processing in accordance with the compari-
son result.

100

Using Version-2 CVM1 CPUs Section 4-12

Precautions

Instruction Input Methods

With the input comparison instructions, however, the comparison results are di-
rectly reflected as the input condition for the next instruction. This simplifies pro-
gramming requirements by eliminating the need to use flags for that purpose.

CMP(020) Example

Execution A50006
iti = 010000

condition (020) . (| |) ¢
——FH—L cmP Do0000 DO01000 1 {| O
Input Comparison Instruction Example

Execution

condition 010000

(300)

— T = D00000 D01000 O—

Input comparison instructions must have an execution condition preceding them
on the instruction line; they cannot be directly connected to the left bus line. In
addition, because they are intermediate instructions, they must have another
instruction following them on the same instruction line. As shown in the example
above, place the execution condition, the instruction, and the output (or other
right-hand instruction) in order.

Multiple input comparison instructions can be used together, as shown in the fol-
lowing example.

A50013
010000
(300) - Py
= D00000 D00001 1 O |
(320)
> D00002 DO0003

To input this instruction block using the Programming Console, input the follow-
ing mnemonics.

LD A50013
ouT TRO

=(300) D0000O D00001
LD TRO

>(320) D00002 D00003
OR LD

ouT 010000

There are two ways to input input comparison instructions. The first is to input the
symbol directly and the second is to input the function code.

Direct Symbol Input

Direct string inputs are possible using the SYSMAC Support Software. Input the
symbol and the options in order. For example, “>=L(326)" can be entered by sim-
ply inputting “>=L."

Function Code Input

Function codes can be input using the SYSMAC Support Software or the
CVM1-PRS21-EV1 Programming Console. Simply input the instruction’s func-
tion code.

101

Using Version-2 CVM1 CPUs Section 4-12

4-12-2 CMP and CMPL

Precautions when
Programming

102

CMP(020) and CMPL(021) are the same in the CV-series and CVM1-series as
in the C-series in that they all output the comparison results to comparison flags.
There are differences, however, in the way that are depicted in ladder diagrams.

Comparison
(020) . flag
F—-oL cmP D00000 DOO000O 1 {| O

In the version-2 CYM1 CPUs, CMP(028) and CMPL(029) operate the same as
comparison instructions in C-series PC in that they output results to comparison
flags, but they are programmed as right-hand instructions. The signed binary
comparison instructions CPS(026) and CPSL(027) also output results to the
comparison flags, but are programmed as right-hand instructions in the same
was as for comparison instructions in the C-series PCs, as shown in the follow-
ing program section.

. (028)
i} { ‘cmP Do00O0 DOOOCO]

Comparison flag

I O

(026)
CPS D00002 D00003 J

m

Comparison flag

I O

In the version-2 CVM1 CPUs, CMP(028), CMPL(029), CPS(026), and
CPSL(027) are not intermediate instructions, and no other instructions can be
programmed on the same instruction line between them and the right-hand bus
bar.

Input methods and instruction sets vary according to which support software is
used.

CV Support Software
Entering “CMP” or “CMPL"” by means of string input specifies CMP(020) or
CMPL(021).

SYSMAC Support Software

Entering “CMP” or “CMPL” by means of string input specifies CMP(028) or
CMPL(029). In order to input CMP(020) or CMPL(021), it is necessary to input
the function code.

Converting Programs

When a C-series ladder program is converted from C to CV using the SYSMAC
Support Software, CMP and CMPL instructions in the program are converted to
CMP(028) and CMPL(029), respectively.

Using Version-2 CVM1 CPUs Section 4-12

4-12-3 Enhanced Math Instructions

The version-2 CVM1 CPUs provides symbol math instructions as an improve-
ment over the earlier BCD and binary math instructions. The basic data format
for these instructions is signed binary, although unsigned, BCD, and floating-
point data options can be specified. The functions of these instructions are
shown as symbols, making them easy to understand at a glance.

Most of these instructions are shown with a symbol and options. When the op-
tions are not included, the instruction will handle data as signed one-word binary
data without carry.

Symbol Data format options Carry option Data length option
+ (Add) B (BCD) C (with carry) L (double)
- (Subtract) | U (Unsigned binary)
X (Multiply) | F (Floating point)
/ (Divide)

The following table shows the function codes, mnemonics, and names of all of
the symbol math instructions. For details, refer to 5-20 Symbol Math Instruc-

tions.

Code | Mnemonic Name

400 + SIGNED BINARY ADD WITHOUT CARRY

401 +L DOUBLE SIGNED BINARY ADD WITHOUT CARRY
402 +C SIGNED BINARY ADD WITH CARRY

403 +CL DOUBLE SIGNED BINARY ADD WITH CARRY

404 +B BCD ADD WITHOUT CARRY

405 +BL DOUBLE BCD ADD WITHOUT CARRY

406 +BC BCD ADD WITH CARRY

407 +BCL DOUBLE BCD ADD WITH CARRY

410 - SIGNED BINARY SUBTRACT WITHOUT CARRY
411 —L DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY
412 -C SIGNED BINARY SUBTRACT WITH CARRY

413 —-CL DOUBLE SIGNED BINARY SUBTRACT WITH CARRY
414 -B BCD SUBTRACT WITHOUT CARRY

415 —-BL DOUBLE BCD SUBTRACT WITHOUT CARRY

416 -BC BCD SUBTRACT WITH CARRY

417 -BCL DOUBLE BCD SUBTRACT WITH CARRY

420 X SIGNED BINARY MULTIPLY

421 XL DOUBLE SIGNED BINARY MULTIPLY

422 *U UNSIGNED BINARY MULTIPLY

423 *UL DOUBLE UNSIGNED BINARY MULTIPLY

424 *B BCD MULTIPLY

425 *BL DOUBLE BCD MULTIPLY

430 / SIGNED BINARY DIVIDE

431 /L DOUBLE SIGNED BINARY DIVIDE

432 /U UNSIGNED BINARY DIVIDE

433 /UL DOUBLE UNSIGNED BINARY DIVIDE

434 /B BCD DIVIDE

435 /BL DOUBLE BCD DIVIDE

103

Data Formats

Section 4-13

Correspondence with
Existing Instructions

Instruction Input Methods

The following table shows the correspondence between the symbol math
instructions and the existing BCD and binary calculation instructions.

Existing instructions Version-2 instructions
BCD ADD ADD(070) +BC (406)
BCD SUBTRACT SUB(071) —-BC(416)
BCD MULTIPLY MUL(072) *B(424)
BCD DIVIDE DIV(073) /B(434)
DOUBLE BCD ADD ADDL(074) +BCL (407)
DOUBLE BCD SUBTRACT SUBL(075) —-BCL(417)
DOUBLE BCD MULTIPLY MULL(076) *BL(425)
DOUBLE BCD DIVIDE DIVL(077) /BL(435)
BINARY ADD ADB(080) +C (402)
BINARY SUBTRACT SBB(081) -C(412)
BINARY MULTIPLY MLB(082) xU(422)
BINARY DIVIDE DVB(083) /U(432)
DOUBLE BINARY ADD ADBL(084) +CL (403)
DOUBLE BINARY SBBL(085) —CL(413)
SUBTRACT
DOUBLE BINARY MULTIPLY | MLBL(086) *UL(423)
DOUBLE BINARY DIVIDE DVBL(087) /UL(433)

There are two ways to input symbol math instructions. The first is to input the
symbol directly and the second is to input the function code.

Direct Symbol Input

Direct string inputs are possible using the SYSMAC Support Software. Input the
symbol and the options in order. For example, “+BL(405)” can be entered by
simply inputting “+BL.”

Function Code Input

Function codes can be input using the SYSMAC Support Software or the
CVM1-PRS21-EV1 Programming Console. Simply input the instruction’s func-
tion code.

4-13 Data Formats

The following data formats can be handled by the various calculation and con-
version instructions.

* Unsigned binary
* Signed binary
 Unsigned BCD
* Signed BCD

* Floating-point

4-13-1 Unsigned Binary Data

Data is configured in words, with 16 bits per word. This data is regarded as 16-bit
binary data. Unsigned binary data is often written as four-digit hexadecimal
(0000 to FFFF).

Bit 15 14 13

12 11 10 09 08 07 06 05 04 03 02 01 00

212 211 210 29 28 27 26 25 24 23 22 21 20

Digit 163

104

Data Formats

Section 4-13

The following example shows the bit status of CIO 0000 as
“0011110000001110.” This would be represented as “3COE” in hexadecimal.

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
ON/OFF 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0
23 22 21 20 23 22 21 20 23 22 21 20 23 22 21 20
21+20=3 23+22=12 0 23+22421=14
Digit 3 C 0 E

Conversion to Decimal

Range of Expression

Double Data

With unsigned binary data, the digits expressed in hexadecimal can be con-
verted to decimal by multiplying the value of each digit by its respective factor.
For example, the hexadecimal value “3COE” would be converted as follows:

(3 x 163) + (12 x 162) + (0 x 161) + (14 x 169) = 15,374

The range that can be expressed in hexadecimal 0000 to FFFF (i.e., O to 65,535
decimal).

Two-word data is handled as 32-bit binary data. Values can be expressed as
eight-digit hexadecimal (0000 0000 to FFFF FFFF), and the equivalent decimal
range is 0 to 4,294,967,295.

4-13-2 Signed Binary Data

Conversion to Decimal

Data is configured in words, with 16 bits per word. This data is regarded as 16-bit
binary data, with the leftmost bit (i.e., the most significant bit, or MSB) used as
the sign bit. Signed binary data is often written as four digits hexadecimal.

When the leftmost bit is OFF, (i.e., set to 0), the number is positive and the value
is expressed as four-digit hexadecimal, from 0000 to 7FFF.

When the leftmost bit is ON, (i.e., set to 1), the number is negative. The value is
expressed as four-digit hexadecimal, from 8000 to FFFF, in 2's complement.

Because the leftmost bit is used as the sign bit, the absolute value that can be
expressed is less than that for unsigned binary data.

With signed binary data, the status of the sign bit (i.e., the MSB) determines
whether the number will be positive or negative. When the sign bit is OFF, the
number will be either positive or zero. As with unsigned binary data, the value
can be converted to decimal by multiplying the value of each digit by its respec-
tive factor. For example, the hexadecimal value “258C” would be converted as
follows:

(2 x 163) + (5 x 162) + (8 x 161) + (12 x 169) = +9,612

105

Data Formats

Section 4-13

Note

Range of Expression

Double Data

Correlation Between Binary
Data and Decimal Numbers

106

When the sign bit is ON, on the other hand, the number will be negative, and the
method for converting to decimal will be different. Because the value is ex-
pressed in 2's complement, it must first be converted to a negative number and
then the value of each digit can be multiplied by its respective factor. For exam-
ple,the hexadecimal value “CFC7” would be converted as follows:

2’s complement C F C 7
1100 | 1111 | 1100 0111

Subtract 1.

1100 1111 1100 0110

Reverse the status of each bit.

True value (negative) 3 0 3 9
0011 0000 0011 1001

The negative decimal number is then calculated as follows:
—[(3x 163) + (0 x 162) + (3 x 161) + (9 x 169)] = -12,345

To convert a negative decimal number into signed binary data, follow the above
procedure in reverse. In other words, first convert the absolute value into 2's
complement, then reverse the bits and add one.

The hexadecimal range is 0000 to 7FFF for a positive number and 8000 to FFFF
for a negative number. These are equivalent in decimal to 0 to +32,767 for a posi-
tive number and -32,768 to -1 for a negative number.

Two-word data is handled as 32 bits of binary data, with the leftmost bit of the
leftmost word used as the sign bit. VValues can be expressed as eight-digit hexa-
decimal (0000 0000 to 7FFF FFFF, 8000 0000 to FFFF FFFF), and the equiva-
lent decimal range is 0 to +2,147,483,647 (positive) and —1 to —2,147,483,648
(negative).

Unsigned binary data Decimal number Signed binary data
FFFF +65,535
FFFE +65,534
etc. etc. Cannot be expressed.
8001 +32,769
8000 +32,768
TFFF +32,767 TFFF
7FFE +32,766 7FFE
etc. etc. etc.
0002 +2 0002
0001 +1 0001
0000 0 0000
-1 FFFF
-2 FFFE
Cannot be expressed. etc. etc.
-32,767 8001
-32,768 8000

Data Formats Section 4-13

Signed Binary Data The following instructions carry out calculations on signed binary data.
Calculations
Operation Mnemonic | Code Name
Addition + 400 SIGNED BINARY ADD WITHOUT CARRY
+L 401 DOUBLE SIGNED BINARY ADD WITHOUT
CARRY
+C 402 SIGNED BINARY ADD WITH CARRY
+CL 403 DOUBLE SIGNED BINARY ADD WITH
CARRY
Subtraction - 410 SIGNED BINARY SUBTRACT WITHOUT
CARRY
-L 411 DOUBLE SIGNED BINARY SUBTRACT
WITHOUT CARRY
-C 412 SIGNED BINARY SUBTRACT WITH CARRY
—-CL 413 DOUBLE SIGNED BINARY SUBTRACT
WITH CARRY
Multiplication | x 420 SIGNED BINARY MULTIPLY
XL 421 DOUBLE SIGNED BINARY MULTIPLY
Division / 430 SIGNED BINARY DIVIDE
/L 431 DOUBLE SIGNED BINARY DIVIDE
Comparison | =S 302 SIGNED EQUAL
=SL 303 DOUBLE SIGNED EQUAL
<>S 307 SIGNED NOT EQUAL
<>SL 308 DOUBLE SIGNED NOT EQUAL
<S 312 SIGNED LESS THAN
<SL 313 DOUBLE SIGNED LESS THAN
<=S 317 SIGNED LESS THAN OR EQUAL
<=SL 318 DOUBLE SIGNED LESS THAN OR EQUAL
>S 322 SIGNED GREATER THAN
>SL 323 DOUBLE SIGNED GREATER THAN
>=S 327 SIGNED GREATER THAN OR EQUAL
>=SL 328 DOUBLE SIGNED GREATER THAN OR
EQUAL

107

Data Formats

Section 4-13

4-13-3 BCD Data

With BCD data, 16-bit word data is expressed as 4-digit binary data (0000 to
9999) using only the hexadecimal numbers 0 to 9. If the data in any digit corre-
sponds to the hexadecimal numbers A to F, an error will be generated.

Bit 15 14

13

12 11 10 09 08 07 06 05 04 03 02 01 00

215 214

213

212 211 210 29 28 27 26 25 24 23 22 21 20

i l

!

i 1 i 1 1 i 1 i i ! l ! !

23‘22‘21‘20

23‘22‘21‘20 23‘22‘21‘20 23‘22‘21‘20

Digit 102 101 100
In the following example, the bit status of CIO 0000 is shown as
“0011100000000111." This value is “3807” in BCD, and would thus be 3,807 in
decimal format.

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

ON/OFF 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1

23 22 21 20 23 22 21 20 23 22 21 20 23 22 21 20
21+20=3 23=8 22 +21+20=7
Digit 8 0 7

Range of Expression

Double Data

The range that can be expressed as BCD data is 0000 to 9999 (0 to 9,999 deci-
mal).

Two-word data is handled as 8-digit BCD data, with a decimal range of O to
99,999,999.

4-13-4 Signed BCD Data

Signed BCD data is a formatted in special data patterns in order to express neg-
ative numbers for 16-bit word data. This format depends on the application, but
in the version-2 CVM1 CPUs four formats are used.

The BINS(275), BISL(277), BCDS(276), and BDSL(278) instructions are pro-
vided for converting between BCD and binary. For details, refer to the explana-
tions of individual instructions in Section 5 Instruction Set.

4-13-5 Floating-point Data

108

Floating-point data is stored as 2-word (32-bit) data in a format defined in
IEEE754. The version-2 CVM1 CPUs provides a humber of floating-point opera-
tion instructions, including math instructions, logarithms, exponents. All of these
handle floating-point data.

The FIX(450), FIXL(451), FLT(452), and FLTL(453) instructions are provided for
converting between floating-point and signed binary data. For details, refer to
the explanations of individual instructions in Section 5 Instruction Set.

SECTION 5
Instruction Set

This section explains each instruction in the CV-series PC instruction sets and provides the ladder diagram symbols, data
areas, and flags used with each. The instructions provided by the CV-series PC are described in following subsections by
instruction group.

Someinstructions, such as Timer and Counter instructions, are used to control execution of other instructions. For example, a
timer Completion Flag might be used to turn ON a bit when the time period set for the timer has expired. Although these other
instructions are often used to control output bits through the OUTPUT instruction, they can be used to control execution of

other instructions as well. The OUTPUT instructions used in examples in this manual can therefore generally be replaced by
other instructions to modify the program for specific applications other than controlling output bits directly.

-1 NOtAtON . .o e 114
B5-2 InStruction FOrmat. e 114
5-3 Data Areas, Definers,and Flags. i e 114
5-4 Differentiated and Immediate Refresh Instructions 117
5-5 Coding Right-hand INStructions. e e e e 119
5-6 Ladder Diagram INStrUCiONS. oo e 121
5-6-1 LOAD, LOAD NOT, AND, AND NOT,OR,andORNOT 121
5-6-2 CONDITION ON/OFF: UP(018) and DOWN(019). 123
5-6-3 BITTEST: TST(350) and TSTN(351) oot 124
5-6-4 NOT: NOT(010).ottt e e e e 125
5-6-5 ANDLOAD and OR LOADt e 125
B5-7 Bit Control INStrUCtioNS. 126
5-7-1 OUTPUT and OUTPUT NOT: OUT and OUTNOT. 126
5-7-2 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014) 127
5-7-3 SET and RESET: SET(016) and RSET(017)., 129
5-7-4 MULTIPLE BIT SET/RESET: SETA(047)/RSTA(048). 130
5-7-5 KEEP: KEEP(OLL) e 132
5-8 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003). 134
5-9 JUMP and JUMP END: JMP(004) and IME(0O5)o 136
5-10 CONDITIONAL JUMP: CIP(221)/CIPN(222). oo oo e e i s 138
5-11 END: END(OOL). . .ottt ettt e e e e e e e 139
5-12 NO OPERATION: NOP(00Q).ottt e e e e 139
5-13 Timer and Counter INStruCtions. o e 139
B5-13-1 TIMER: TIM . o e e 142
5-13-2 HIGH-SPEED TIMER: TIMH(015).o 146
5-13-3 ACCUMULATIVE TIMER: TTIM(120).ot e 148
5-13-4 LONG TIMER: TIML(L121). . . .ottt e e ettt 150
5-13-5 MULTI-OUTPUT TIMER: MTIM(122)o 151
5-13-6 COUNTER: CNT. . .ot e e i 153
5-13-7 REVERSIBLE COUNTER: CNTR(012).t 156
5-13-8 RESET TIMER/COUNTER: CNR(236).o oo i 158
B5-14 Shift INStrUCHIONS o e e 159
5-14-1 SHIFT REGISTER: SFT(05Q). oottt e e 159
5-14-2 REVERSIBLE SHIFT REGISTER: SFTR(051) 162
5-14-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(052).covvu... 163
5-14-4 WORD SHIFT: WSFT(053). . . . vt e et 165
5-14-5 SHIFT N-BIT DATALEFT: NSFL(O54)ot 166
5-14-6 SHIFT N-BIT DATA RIGHT: NSFR(055).o oo 167
5-14-7 SHIFT N-BITS LEFT: NASL(056) . . . oo oot e e e 168
5-14-8 SHIFT N-BITS RIGHT: NASR(057). . .« o o oot 169
5-14-9 DOUBLE SHIFT N-BITS LEFT: NSLL(058). it 170

109

110

5-15

5-16

5-17

5-14-10 DOUBLE SHIFT N-BITS RIGHT: NSRL(059)o
5-14-11 ARITHMETIC SHIFT LEFT: ASL(060)ot
5-14-12 ARITHMETIC SHIFT RIGHT: ASR(061).ot
5-14-13 ROTATE LEFT: ROL(062). . . .« vt ittt e e e e e e e i e e
5-14-14 ROTATE RIGHT: ROR(063)t vttt e e e e e
5-14-15 DOUBLE SHIFT LEFT: ASLL(064)ottt
5-14-16 DOUBLE SHIFT RIGHT: ASRL(065)ot
5-14-17 DOUBLE ROTATE LEFT: ROLL(066).ot
5-14-18 ROTATE LEFT WITHOUT CARRY: RLNC(260)ovven ..
5-14-19 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(262).
5-14-20 DOUBLE ROTATE RIGHT: RORL(067)ot oot
5-14-21 ROTATE RIGHT WITHOUT CARRY: RRNC(261).ot
5-14-22 DOUBLE ROTATE RIGHT W/O CARRY: RRNL(263).
5-14-23 ONE DIGIT SHIFT LEFT: SLD(068)« oottt e
5-14-24 ONE DIGIT SHIFT RIGHT: SRD(069). oot
Data Movement INSLrUCLIONS
5-15-1 MOVE: MOV(030) . . . oottt et et e e e e e e e e
5-15-2 MOVE NOT: MVN(O3L). . . .ottt e e e e
5-15-3 DOUBLE MOVE: MOVL(032). . . . oottt i e e e e i i
5-15-4 DOUBLE MOVE NOT: MVNL(033). . . .ottt e e i i
5-15-5 DATA EXCHANGE: XCHG(034) oot e e
5-15-6 DOUBLE DATA EXCHANGE: XCGL(035). . . .t v ot i
5-15-7 MOVE TO REGISTER: MOVR(036)ottt
5-15-8 MOVE QUICK: MOVQ(037) . . . ottt e et e e e e e e e e
5-15-9 MULTIPLE BIT TRANSFER: XFRB(038)o oo
5-15-10 BLOCK TRANSFER: XFER(040)« oottt
5-15-11 BLOCK SET: BSET(041) oottt e e e e e e e e
5-15-12 MOVE BIT: MOVB(042)o ittt e e e e e e e
5-15-13 MOVE DIGIT: MOVD(043) . . . o ottt et e e e e e e e e e e
5-15-14 SINGLE WORD DISTRIBUTE: DIST(044).ot oo
5-15-15 DATA COLLECT: COLL(045). . . . oot e e e
5-15-16 INTERBANK BLOCK TRANSFER: BXFR(046).t
Comparison INSIIUCIONS oo e
5-16-1 COMPARE: CMP(020). . . .o ottt e e e e
5-16-2 DOUBLE COMPARE: CMPL(021). ottt e
5-16-3 BLOCK COMPARE: BCMP(022).ottt e e
5-16-4 TABLE COMPARE: TCMP(023). . . .« oottt e e e e
5-16-5 MULTIPLE COMPARE: MCMP(024).ottt
5-16-6 EQUAL: EQU(025). . . . ottt e e e
5-16-7 Input Comparison Instructions (300t0328).
5-16-8 SIGNED BINARY COMPARE: CPS(026).ottt
5-16-9 DOUBLE SIGNED BINARY COMPARE: CPSL(027) oo it
5-16-10 UNSIGNED COMPARE: CMP(028). oot et e
5-16-11 DOUBLE UNSIGNED COMPARE: CMPL(029).,
Conversion INStrUCHIONSo
5-17-1 BCD-TO-BINARY: BIN(100)ottt e
5-17-2 BINARY-TO-BCD: BCD(101) oottt e
5-17-3 DOUBLE BCD-TO-DOUBLE BINARY: BINL(102).
5-17-4 DOUBLE BINARY-TO-DOUBLE BCD: BCDL(103).cvvine .t
5-17-5 2'S COMPLEMENT: NEG(104)ot e
5-17-6 DOUBLE 2’'S COMPLEMENT: NEGL(105)o
5-17-7 SIGN: SIGN(L06)ottt
5-17-8 DATA DECODER: MLPX(110).ot e
5-17-9 DATA ENCODER: DMPX(111). . .ottt
5-17-10 7-SEGMENT DECODER: SDEC(112)ot
5-17-11 ASCII CONVERT: ASC(113) . . . oottt
5-17-12 BIT COUNTER: BCNT(114). . . . oot

5-18

5-19

5-20

5-21

5-22

5-17-13 COLUMN TO LINE: LINE(115) oot i 237

5-17-14 LINE TO COLUMN: COLM(116). . . .t oot e 238
5-17-15 ASCIHH TO HEX: HEX(117). . . oo vttt e et e e e 239
5-17-16 SIGNED BCD-TO-BINARY: BINS(275).o e 242
5-17-17 SIGNED BINARY-TO-BCD: BCDS(276). . .+« « o oot e e e i 244
5-17-18 DOUBLE SIGNED BCD-TO-BINARY: BISL(277) oo 246
5-17-19 DOUBLE SIGNED BINARY-TO-BCD: BDSL(278)ot 248
BCD Calculation INStruCtions. e 249
5-18-1 SET CARRY: STC(078). . . oot ettt et e et e e 250
5-18-2 CLEAR CARRY: CLC(079). . . o\ttt e e e e e 250
5-18-3 BCD ADD: ADD(070). . . v vttt it e e 250
5-18-4 BCD SUBTRACT: SUB(071) . . .o oottt i e e e e e 251
5-18-5 BCD MULTIPLY: MUL(O72) . ..ottt e e e e e e e e 253
5-18-6 BCD DIVIDE: DIV(073) . . . o oottt e e e e 254
5-18-7 DOUBLE BCD ADD: ADDL(074). . . . oottt e e e e 255
5-18-8 DOUBLE BCD SUBTRACT: SUBL(O75). oo 256
5-18-9 DOUBLE BCD MULTIPLY: MULL(O76).ottt e e 257
5-18-10 DOUBLE BCD DIVIDE: DIVL(O77) . . ottt e e e e 258
Binary Calculation INStructions 261
5-19-1 BINARY ADD: ADB(080) . .. vttt et e e 261
5-19-2 BINARY SUBTRACT: SBB(081)ottt 262
5-19-3 BINARY MULTIPLY: MLB(082)ttt e 264
5-19-4 BINARY DIVIDE: DVB(083) . . . o o oo ottt e 265
5-19-5 DOUBLE BINARY ADD: ADBL(084).t e 266
5-19-6 DOUBLE BINARY SUBTRACT: SBBL(085).o 268
5-19-7 DOUBLE BINARY MULTIPLY: MLBL(086) 269
5-19-8 DOUBLE BINARY DIVIDE: DVBL(087)t 270
Symbol Math InStrucCtions. 272
5-20-1 Binary Addition: +(400)/+L(401)/+C(402)/+CL(403) vvvv. .. 272
5-20-2 BCD Addition: +B(404)/ +BL(405)/+BC(406)/+BCL(407). 274
5-20-3 Binary Subtraction: —(410)/ —-L(411)/-C(412)/-CL(413) 276
5-20-4 BCD Subtraction: —B(414)/ —-BL(415)/-BC(416)/-BCL(417) 281
5-20-5 Binary Multiplication: *(420)/ *L(421)/*U(422)/*UL(423). 285
5-20-6 BCD Multiplication: *B(424)/ *BL(425). oo oo 287
5-20-7 Binary Division: /(430)/ /L(431)//U(432)//UL(433) oo en 289
5-20-8 BCD Division: /B(434)/ IBL(435). . . .ottt i 291
Floating-point Math InStructions. 293
5-21-1 FLOATING TO 16-BIT: FIX(450) oot 296
5-21-2 FLOATING TO 32-BIT: FIXL(451) oot e 297
5-21-3 16-BIT TO FLOATING: FLT(452). . . . o oo e 298
5-21-4 32-BIT TO FLOATING: FLTL(453). . . . oo oo e 298
5-21-5 FLOATING-POINT ADD: +F(454) . . . o oo e 299
5-21-6 FLOATING-POINT SUBTRACT: =F(455). oo 300
5-21-7 FLOATING-POINT MULTIPLY: *F(456). o oo oot e e 301
5-21-8 FLOATING-POINT DIVIDE: [F(457) . . oo e e 302
5-21-9 DEGREES TO RADIANS: RAD(458) oo i e e 303
5-21-10 RADIANS TO DEGREES: DEG(459)ottt 304
5-21-11 SINE: SIN(460). oottt 305
5-21-12 COSINE: COS(46L1). . . .ottt e e e e 306
5-21-13 TANGENT: TAN(462). o ot e e 307
5-21-14 SINE TO ANGLE: ASIN(463). o oo e e 308
5-21-15 COSINE TO ANGLE: ACOS(464). oottt e 309
5-21-16 TANGENT TO ANGLE: ATAN(465).ot e e 310
5-21-17 SQUARE ROOT: SQRT(466). . . . o oottt e ittt 311
5-21-18 EXPONENT: EXP(467). . . oottt e et e et e e 312
5-21-19 LOGARITHM: LOG(468). . . . o ot oottt e e e e 313
Increment/Decrement INSIFUCLIONSottt e e 314

111

112

5-23

5-24

5-25

5-26

5-27

5-28

5-29
5-30

5-31

5-22-1 INCREMENT BCD: INC(090). oottt e e e i e 314

5-22-2 DECREMENT BCD: DEC(091)t v v it i e e 314
5-22-3 INCREMENT BINARY: INCB(092). oot 315
5-22-4 DECREMENT BINARY: DECB(093)o o oo e 316
5-22-5 DOUBLE INCREMENT BCD: INCL(094)o oo 316
5-22-6 DOUBLE DECREMENT BCD: DECL(095).o vt 317
5-22-7 DOUBLE INCREMENT BINARY: INBL(096) 317
5-22-8 DOUBLE DECREMENT BINARY: DCBL(097). oo i e 318
Special Math INStructions. 319
5-23-1 FIND MAXIMUM: MAX(165)ot e e 319
5-23-2 FIND MINIMUM: MIN(166)ttt e e 320
5-23-3 SUM: SUM(LB7). . . vttt e e e e 322
5-23-4 BCD SQUARE ROOT: ROOT(140). . .« v v oot et e e e e 323
5-23-5 BINARY ROOT: ROTB(274). . . o v oottt e e e e e e e 325
5-23-6 FLOATING POINT DIVIDE: FDIV(141). oo i 326
5-23-7 ARITHMETIC PROCESS: APR(142). oo 328
PID and Related INStructions. i e 330
5-24-1 PID CONTROL: PID(270). . .« o oottt et e e e e e 330
5-24-2 LIMIT CONTROL: LMT(271) . . .ottt e e e 337
5-24-3 DEAD-BAND CONTROL: BAND(272)o ottt 338
5-24-4 DEAD-ZONE CONTROL: ZONE(273) . . . o oot 340
LOgiC INStIUCHIONSo e 341
5-25-1 LOGICAL AND: ANDW(130) . . . vttt e e et et 341
5-25-2 LOGICAL OR: ORW(131). . . vttt e e e 342
5-25-3 EXCLUSIVE OR: XORW/(132) oot 343
5-25-4 EXCLUSIVE NOR: XNRW(133). . . .ottt i e i e i 343
5-25-5 DOUBLE LOGICAL AND: ANDL(134)ot 344
5-25-6 DOUBLE LOGICAL OR: ORWL(135)ttt i 345
5-25-7 DOUBLE EXCLUSIVE OR: XORL(136)ottt 346
5-25-8 DOUBLE EXCLUSIVE NOR: XNRL(137). . . .ot 346
5-25-9 COMPLEMENT: COM(138) . . . vttt i 347
5-25-10 DOUBLE COMPLEMENT: COML(139)t 348
TIMe INStTUCHIONS. . . . oo e e 349
5-26-1 HOURS TO SECONDS: SEC(143)ottt 349
5-26-2 SECONDS TO HOURS: HMS(144). oo e 350
5-26-3 CALENDAR ADD: CADD(145). . . vttt e e e e 350
5-26-4 CALENDAR SUBTRACT: CSUB(146)t 352
5-26-5 CLOCK COMPENSATION: DATE(179). . . .o oo 353
Special INStrUCHIONS. e 354
5-27-1 FAILURE/SEVERE FAILURE ALARM: FAL(006) and FALS(007). 354
5-27-2 FAILURE POINT DETECTION: FPD(177). . .o ottt 356
5-27-3 MAXIMUM CYCLE TIME EXTEND: WDT(178)ccvviiiennnn.. 361
5-27-4 /O REFRESH: IORF(184)o e e 362
5-27-5 1/O DISPLAY: IODP(189). . . .t ittt e 362
5-27-6 SELECT EM BANK: EMBC(171). . . . o oot e 364
5-27-7 DATA SEARCH: SRCH(164) oo e e e 365
Flag/Register INStruCtions i e 366
5-28-1 LOAD FLAGS: CCL(A72) . . vttt e e e e e e e e 366
5-28-2 SAVE FLAGS: CCS(173). . . vt vttt e et e et e e e 367
5-28-3 LOAD REGISTER: REGL(175)ttt 367
5-28-4 SAVE REGISTER: REGS(176).ottt e 368
STEP DEFINE and STEP START: STEP(008)/SNXT(009) 368
SUDIOULINESo e 377
5-30-1 SUBROUTINE ENTRY and RETURN: SBN(150)/RET(152). 377
5-30-2 SUBROUTINE CALL: SBS(151)ttt 378
5-30-3 MACRO: MCRO(156) . . vttt i it e e e e e 380
Interrupt CoNtrol 382

5-32

5-33

5-34

5-35

5-36

5-37

5-38

5-31-1 INTERRUPT MASK: MSKS(153). . . .o oottt 385

5-31-2 CLEAR INTERRUPT: CLI(154)o e 386
5-31-3 READ MASK: MSKR(155) . . .ot 388
StAaCK INSIIUCHIONS o e 389
5-32-1 SET STACK: SSET(16Q). . . .« ottt et e e e e e e e e 389
5-32-2 PUSH ONTO STACK: PUSH(161).t i 390
5-32-3 LASTINFIRST OUT: LIFO(162). . . .ttt it i e e 391
5-32-4 FIRSTIN FIRST OUT: FIFO(163)« oot 392
Data TraCing . . . vt e 393
5-33-1 TRACE MEMORY SAMPLING: TRSM(170)o v i 393
5-33-2 MARK TRACE: MARK(L74) . . . oo e 395
Memory Card INStrUCLIONS oo e 396
5-34-1 READ DATA FILE: FILR(180). . . . oot 396
5-34-2 WRITE DATA FILE: FILW(L8L1). oottt e e 398
5-34-3 READ PROGRAM FILE: FILP(182). 400
5-34-4 CHANGE STEP PROGRAM: FLSP(183).ot 402
Special IO INStrUCLIONSo e 404
5-35-1 /O READ: READ(190). . . .\ttt e e 404
5-35-2 I/OREAD 2: RD2(280) ottt et e e e e e 406
5-35-3 /O WRITE: WRIT(191)ot e e 408
5-35-4 IJOWRITE 2: WR2(281) oottt e e e e 411
Network INSTFUCHIONS.o e e e e 413
5-36-1 DISABLE ACCESS: IOSP(187) . . . o oottt e e e e e e 413
5-36-2 ENABLE ACCESS: IORS(188).\t e 414
5-36-3 DISPLAY MESSAGE: MSG(195).ot i e e 414
5-36-4 NETWORK SEND: SEND(192)ot e 415
5-36-5 NETWORK RECEIVE: RECV(193).ttt 418
5-36-6 DELIVER COMMAND: CMND(194)ttt 420
5-36-7 About SYSMAC NET Link/SYSMAC LINK Operations. 423
SFC Control INStrUCtiONS o oo e 427
5-37-1 ACTIVATE STEP: SA(210) . . .« oottt e e 427
5-37-2 PAUSE STEP: SP(211). . .. ottt 428
5-37-3 RESTART STEP: SR(212)o e e 429
5-37-4 END STEP: SF(213) . ..ot e 430
5-37-5 DEACTIVATE STEP: SE(214)ot e 431
5-37-6 RESET STEP: SOFF(215)ottt e 432
5-37-7 TRANSITION OUTPUT: TOUT(202).ottt 433
5-37-8 TRANSITION COUNTER: TCNT(123) . . . oot it e e e 434
5-37-9 READ STEP TIMER: TSR(124).o it e 435
5-37-10 WRITE STEP TIMER: TSW(125).o e 436
5-37-11 SFC Control Program Example 437
Block Programming INStructions. 438
5-38-1 OVeIVIEW . . oot ... A3
5-38-2 BLOCK PROGRAM BEGIN/END: BPRG(250) / BEND<QO01>. 439
5-38-3 Branching-IF<002>, ELSE<003>, and IEND<Q04>................... 440
5-38-4 ONE CYCLE AND WAIT: WAIT<005>.t 443
5-38-5 CONDITIONAL BLOCK EXIT: EXIT<006>.ttt 444
5-38-6 Loop Control-LOOP<009>/LEND<Q10>.t 445
5-38-7 BLOCK PROGRAM PAUSE/RESTART : BPPS<011>/BPRS<012>. 446
5-38-8 HIGH-SPEED TIMER/TIMER WAIT: TIMW<013>/TMHW<015>. 447
5-38-9 COUNTER WAIT: CNTW<014>. e i 448

113

Data Areas, Definer Values, and Flags Section 5-3

5-1

5-2

Notation

In the remainder of this manual, instructions will be referred to by their mnemon-
ics. For example, the OUTPUT instruction will be called OUT; the AND LOAD
instruction, AND LD. If you're not sure of the instruction a mnemonic is for, refer
to Appendix B Programming Instructions.

If an instruction is assigned a function code, it will be given in parentheses after
the mnemonic. These function codes, which are 3-digit decimal numbers, can
be used to input instructions into the CPU and are described briefly below. A
table of instructions listed in order of function codes is also provided in Appendix
B.

An up or down arrow, 1 or |l at the beginning of a mnemonic indicates a differen-
tiated up or down version of that instruction. An exclamation mark, !, before a
mnemonic indicates an immediate refresh version of that instruction. Differen-
tiated and immediate refresh instructions are explained on page 117.

Instruction Format

Most instructions have at least one or more operands associated with them. Op-
erands indicate or provide the data on which an instruction is to be performed.
These are sometimes input as the actual numeric values (i.e., as constants), but
are usually the addresses of data area words or bits that contain the data to be
used. A bit whose address is designated as an operand is called an operand bit ;
a word whose address is designated as an operand is called an operand word .
In some instructions, the word address designated in an instruction indicates the
first of multiple words containing the desired data.

Each instruction requires one or more words in Program Memory. The first word
is the instruction word , which specifies the instruction and contains any defin-
ers (described below) or operand bits required by the instruction. Other oper-
ands required by the instruction are contained in following words, one operand
per word. Some instructions require up to four words.

A definer is an operand associated with an instruction and contained in the
same word as the instruction itself. These operands define the instruction rather
than telling what data it is to use. Examples of definers are timer and counter
numbers, which are used in timer and counter instructions to create timers and
counters, as well as jump numbers, which define which JUMP instruction is
paired with which JUMP END instruction. Bit operands are also contained in the
same word as the instruction itself, although these are not considered definers.

5-3 Data Areas, Definers, and Flags

114

Each instruction is introduced with a frame that shows the basic form of the
instruction, the variations of the instruction, and the data areas that can be used
for each operand, as shown in the following illustration

Basic ladder symbol Data areas allowed for operands

\

Ladder Symbol

Variations
1 SA

Operand Data Areas

N1: Step number ST

N2: Subchart number ST or 9999

Instruction variations available

Data Areas, Definer Values, and Flags Section 5-3

Basic Ladder Symbol

Variations

Operand Data Area
Precautions

The ladder symbol shows how the instruction will appear in a program. The func-
tion code (here, 210) is provided above the mnemonic (SA) and the operands
are provided to the right (here, N1 and N,). The ladder symbol is the same for any
of the variations of the instruction except that the mnemonic changes.

The alternate forms of the instruction are listed here, including immediate re-
fresh and differentiated forms.

The data areas are listed that can be used for each instruction. The actual oper-
and will be a number, such as a word address, a bit address, an indirect address,
or a constant, depending on the requirements of the instruction and the needs of
the program.

Not all addresses in the specified data areas are necessarily allowed for an oper-
and, e.g., if an operand requires two words, the last word in a data area cannot
be designated as the first word of the operand because all words for a single op-
erand must be within the same data area. Refer to Section 3 Memory Areas for
addressing conventions and the addresses of specific flags and control bits.

For example, the second operand (CB) in the BLOCK COMPARE instruction
(BCMP(022), shown below) specifies the first word of a comparison table that is
32 words long. This operand thus cannot be any of the last 31 words in an data
area, e.g., if the CPU Bus Link Area is used, the last word that could be desig-
nated would be G224. Designating G245 would cause an error and the instruc-
tion would not be executed.

Ladder Symbol
(022)
—BCMP S

Variations
1 BCMP(022)

CB

Operand Data Areas
R] S: Source data CIO, G, A, T,C, #, DM, DR, IR

CB: 15t block word CIO, G, A, T, C, DM

R: Result word CIO,G,A, T,C, DM, DR, IR

Note: The DM Area, IR, and DR are not listed as operand data areas unless they can

&Caution

be addressed directly. These areas can be used for indirectly addressing oper-
ands provided that the address being pointed to is a legal address. For example,
for BCMP(022) (shown above) and Index Register could be used to indirectly
address a DM address for the second operand, CB. Refer to the discussion on
Indirect Addressing later in this section.

The Auxiliary Area words between A000 and A255 and the CPU Bus Link Area
words G008 through G255 can be read from or written to from the user program.
A256 to A511 and G000 to G007, however, can be read from to access the data
provided there, but cannot be written to from the user program, i.e., they cannot
be used as operands if the instruction alters the contents of the operand during
processing.

Designating Constants

Although data area addresses are most often given as operands, many oper-
ands can be input as constants. The available value range for a given operand
depends on the particular instruction that uses it. Constants must also be en-
tered in the form required by the instruction, i.e., in BCD or in hexadecimal.

Constants are also input as either four digits or as either digits, depending on the
requirements of the instruction (e.g., constants for double, or long, instructions
require eight digits).

115

Data Areas, Definer Values, and Flags Section 5-3

Flags

&Caution

Indirect Addressing

BCD Addressing

- - - -—EI\SI(g’\[;) *D00001 AOOl] ————— D00001 2222

116

The Flags subsection lists flags that are affected by execution of an instruction.
These flags include the following Auxiliary Area flags.

Abbreviation Name Bit
ER Instruction Execution Error Flag A50003
CcYy Carry Flag A50004
GR Greater Than Flag A50005
EQ Equals Flag A50006
LE Less Than Flag A50007
N Negative Flag A50008

ER is the flag most commonly used for monitoring an instruction’s execution.
When ER goes ON, it indicates that an error has occurred in attempting to
execute an instruction. The Flags subsection of each instruction lists possible
reasons for ER going ON. ER will turn ON if operands are not entered correctly.

Most instructions are not executed when ER is ON. A table of instructions and
the flags they affect is provided in Appendix B Error and Arithmetic Flag Opera-
tion.

The DM or EM Area can be used to indirectly address an operand. Indirect DM or
EM addressing is specified by placing an asterisk before the D or E: *D or xE.
(EM Area is available as an option for the CV1000, CV2000, or
CVM1-CPU21-EV2 only.)

The operation of indirect addressing is affected by the PC Setup specified from
the CVSS. The PC Setup can be used to specify whether the content of a word
containing an indirect address contains the BCD data area address or contains
the binary (hexadecimal) PC memory address.

When indirect DM data is designated as BCD, the address of the desired word
must be in BCD and it must specify the data area address of a word within the
DM or EM Area. The content of the operand word containing the indirect address
(e.g., xD00000) has to be in BCD and has to be between 0000 and 8191 for the
CV500 or CVM1-CPUO1-EV2 and between 0000 and 9999 for the CV1000,
CVv2000, CVM1-CPU1l1l-EV2, or CVMI1-CPU21-EV2. Although CV1000,
CV2000, and CVYM1-CPU21-EV2 DM and EM Area addresses go to D24575
and E32765, only the first 10,000 words can be indirectly addressed when indi-
rect DM data is designated as BCD.

When an indirect DM or EM address is specified in BCD, the DM or EM word
specified for the operand will contain the address of the DM or EM word that con-
tains the data that will be used as the operand of the instruction. If, for example,
*D00001 was designated as the first operand of MOV(030), the contents of
D00001 was 2222, and D02222 contained 5555, the value 5555 would be
moved to the word specified for the second operand.

Word Content
D00000 4C59

Indirect Indicates
address DO0002 F35A D02222.

D02222 5555
D02223 2506 | . 5555 moved
D02224 D541 to AOOL.

Differentiated and Immediate Refresh Instructions Section 5-4

Binary Indirect Addressing

(030)

--- -—[MOV *E00001 Dozooo] — F00001 0A00

Index and Data Registers

When indirect DM data is designated as binary, the content of the XD or XE ad-
dress specifies the PC memory address, and thus can have any value between
$0000 and $FFFF, as long as the instruction can be executed with the specified
PC memory address.

When an indirect DM or EM address is specified in binary (hexadecimal), the
designated DM or EM word will contain the PC memory address of the word that
contains the data that will be used as the operand of the instruction. If, for exam-
ple, XEO0001 was designated as the first operand of MOV(030), the contents of
E00001 was $0A00, and $0A00 (G000, CPU Bus Link Area) contained 8014, the
value 8014 would be moved to the word specified for the second operand.

Word Content
E00000 4C59

Indirect
address E00002 F35A Indicates

G000 ($0A00).

G000 8014
G001 2506 | ™. 8014 moved
G002 D541 to D02000.

Index and data registers can also be used to indirectly address memory. Refer to
3-12 Index and Data Registers (IR and DR) for details and examples.

5-4 Differentiated and Immediate Refresh Instructions

Differentiated Instructions

Note:

Most instructions are provided in both non-differentiated and differentiate up
forms, and some instructions are also provided with a differentiate down form.
Differentiated instructions are distinguished by an up or down arrow, 1 or {, just
before the instruction mnemonic.

A non-differentiated instruction is executed each time it is scanned. A differenti-
ate up instruction is executed only once after its execution condition goes from
OFF to ON. If the execution condition has not changed or has changed from ON
to OFF since the last time the instruction was scanned, the instruction will not be
executed.

A differentiate down instruction is executed only once after its execution condi-
tion goes from ON to OFF. If the execution condition has not changed or has
changed from OFF to ON since the last time the instruction was scanned, the
instruction will not be executed.

Do not use A50013 (Always ON Flag), A50014 (Always OFF Flag), or A50015
(First Cycle Flag) to control execution of differentiated instructions. The instruc-
tions will never be executed.

The following examples show how this works with MOV(030) and 1MOV/(030)
which are used to move the data in the address designated by the first operand
to the address designated by the second operand.

117

Differentiated and Immediate Refresh Instructions Section 5-4

0000

The execution condition is always compared to the execution condition that ex-
isted the last time the instruction was scanned, which may not be the previous
cycle if an instruction is in a step in an SFC program, in a section of the program
skipped by a jump, in a subroutine, etc. In the following examples, we will as-
sume that the MOVE instruction is scanned each cycle.

Immediate Refreshing

118

| 00 (030) Address | Instruction |Operands
: : [mov A001 DO00000
| 00000 LD 000000
Diagram A 00001 MOV(030)
A0001
DO00000
0000 -
00 (030) Address | Instruction | Operands
1L r
i | {tMov AcO1 D00000 50000 D 500000
Diagram B 00001 tMOV(030
A001
DO00000

In diagram A, the non-differentiated MOV(030) will move the content of AQ0O1 to
DO00000 whenever it is scanned with 000000 ON. If the cycle time is 80 ms and
000000 remains ON for 2.0 seconds, this move operation will be performed 25
times and DO000O will contain the last value moved to it.

In diagram B, the differentiate up instruction MOV/(030) will move the content of
A001 to DO000O0 only once after 000000 goes ON. Even if 000000 remains ON
for 2.0 seconds, the move operation will be executed only during the first cycle in
which 000000 has changed from OFF to ON. Because the content of AOO1 could
very well change during the 2 seconds while 000000 is ON, the final content of
D00000 after the 2 seconds could be different depending on whether MOV(030)
or fMOV(030) was used.

All operands and other specifications for instructions are the same regardless of
whether the differentiated or non-differentiated form of an instruction is used.
When inputting, the same function codes are also used.

Operation of differentiated instructions can be uncertain when the instructions
are programmed between IL and ILC, between JMP and JME, or in subroutines.
Refer to 5-8 INTERLOCK and INTERLOCK CLEAR — IL(002) and ILC(003), 5-9
JUMP and JUMP END — JMP(004) and JME(005), and 5-30 Subroutines and
5-31 Interrupt Control for details.

CV-series PCs also provide differentiation instructions: DIFU(013) and
DIFD(014). These instruction operate as the differentiated variations of the
OUTPUT instruction: DIFU(013) turns ON a bit for one cycle when the execution
condition has changed from OFF to ON and DIFD(014) turns ON a bit for one
cycle when the execution condition has changed from ON to OFF. Refer to 5-7-2
DIFFERENTIATE UP/DOWN — DIFU(013) and DIFD(014) for details.

Up or down differentiation can be combined with immediate refreshing in a
single instruction.

Many instructions are provided in an immediate refresh version, distinguished
by an exclamation mark, !, at the beginning of the mnemonic. An immediate re-
fresh instruction updates the status of input bits just before, or output bits just
after, the instruction is executed. If the instruction has a word operand, the whole
word is updated, and if the instruction has a bit operand, only the byte (leftmost
or rightmost 8 bits) containing the bit operand is updated.

The 1/O response time is reduced with an immediate refresh instruction because
status is read from the input bit or written to the output bit without waiting for the
next I/O refresh period. Refer to 6-5 I/O Response Time for details on the effects
of immediate refresh instructions on I/O response time.

Coding Right-hand Instructions Section 5-5

Immediate refreshing and up or down differentiation can be combined in a single
instruction. Immediate refresh instructions cannot be used for I/O points on
Units mounted to Slave Racks in a SYSMAC BUS or SYSMAC BUS/2 Remote
I/O System.

5-5 Coding Right-hand Instructions

Writing mnemonic code for ladder instructions is described in Section 4 Writing
Programs. Converting the information in the ladder diagram symbol for all other
instructions follows the same pattern, as described below, and is not specified
for each instruction individually.

The first word of any instruction defines the instruction and provides any defin-
ers. The bit operand is also placed on the same line as the mnemonic for some
instructions with certain operands. All other operands are placed on lines after
the instruction line, one operand per line and in the same order as they appear in
the ladder symbol for the instruction.

The address and instruction columns of the mnemonic code table are filled in for
the instruction word only. For all other lines, the left two columns are left blank. If
the instruction requires no definer or bit operand, the data column is left blank for
first line. It is a good idea to cross through any blank data column spaces (for all
instruction words that do not require data) so that the data column can be quickly
scanned to see if any addresses have been left out.

If a CIO address is used in the data column, the left side of the column is left
blank. If any other data area is used, the data area abbreviation is placed on the
left side and the address is placed on the right side. If a constant is to be input,
the number symbol (#) is placed on the left side of the data column and the num-
ber to be input is placed on the right side. Any numbers input as definers in the
instruction word do not require the number symbol on the right side.

When coding an instruction that has a function code, be sure to write in the func-
tion code, which can be used when inputting the instruction via the Peripheral
Device. Also be sure to designate differentiated instructions with the 1 or | sym-
bol.

119

Coding Right-hand Instructions Section 5-5

The following diagram and corresponding mnemonic code illustrates the points
described above.

Address | Instruction |Operands
00000 LD 000000
0000 0000 00001 AND 000001
A r o 00002 | OR 000002
—| |—|I [DIFU 022500 }—
0000 00003 DIFU(013) | 022500
02 00004 LD 000100
I 00005 | AND NOT | 000200
0001 0002 0225
00 00 00 - (@) 00006 LD 001001
1 L [BONT #0001 0004 AQO1 }— 00007 | AND NOT | 001002
%10 %8° 88 00008 | AND NOT | A50006
— ——H— 00009 | ORLD —
0900 00010 | AND 022500
“ L mm 0000 #0150 J— 00011 BCNT(114) | —
#0001
T0000 030
I '-I\SIOV) 1200 A0001 — 0004
M - A001
1200 0005
15 00 00012 LD 000005
I ﬁ 00013 T0000
#0150
00014 LD T0000
00015 MOV(030) [—
1200
A001
00016 LD 120015
00017 OUT NOT | 000500
Multiple Instruction Lines If a right-hand instruction requires multiple instruction lines, all of the lines for the
instruction are entered before the right-hand instruction when inputting in mne-
monic form (although this is not always true when inputting using ladder dia-
grams). Each line of the instruction is coded first to form ‘logic blocks’ combined
by the right-hand instruction. An example of this for SFT(050) is shown below.
Address | Instruction |Operands
0ge0 0go0 00000 LD 000000
1 I : "g)g?) 1200 1200 }— 00001 AND 000001
1 11 L
0000 00002 LD 000002
I P 00003 D 000100
0001 0002 0225 00004 AND NOT| 000200
o *© 9 R 00005 LD 001001
" A1 " 00006 AND NOT| 001002
0010 0010 A500
oL 02 06 00007 AND NOT| A50006
I 00008 ORLD —
1290 0905 00009 AND 022500
1L
T B— 00010 SFT(050) | —
1200
1200
00011 LD 120015
00012 OUT NOT| 000500
END(001) When you have finished coding the program, make sure you have placed

END(001) at the last address.

120

Ladder Diagram Instructions Section 5-6

5-6 Ladder Diagram Instructions

Ladder Diagram Instructions include Ladder Instructions and Logic Block
Instructions. Ladder Instructions correspond to the conditions on the ladder
diagram. Logic Block Instructions are used to relate more complex parts of
the diagram that cannot be programmed with Ladder Instructions alone.

5-6-1 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT

LOAD: LD

Ladder Symbols Operand Data Area
B B B: Bit CIO, G, A T,C,ST, TN
—
B B
——
B B Mnemonics
1l 4l LD 14 LD 1} LD
1 LD VLD LD
LOAD NOT: LD NOT
Ladder Symbols Operand Data Area
B B: Bit CIO, G, A T,C, ST, TN
_’l/H
B
_’H/H
Mnemonics
LD NOT LD NOT
AND: AND
Ladder Symbols Operand Data Area
|B. |$’| B: Bit CIO,G,A T,C, ST, TN
11 v
IBI IBI
1 1M
B B Mnemonics
i i
AND 1+ AND 1y AND
1+ AND V AND ' AND
AND NOT: AND NOT
Ladder Symbols Operand Data Area
B B: Bit CIO, G, A T,C, ST, TN
_’l/H
B
_’H/H
Mnemonics
AND NOT I AND NOT

121

Ladder Diagram Instructions

Section 5-6

OR: OR
Ladder Symbols Operand Data Area
5 B: Bit CIO, G, A T,C, ST, TN
— =
'Bl— Mnemonics
' OR 11 OR 1l OR
B 1 OR { OR I0OR
— 1=

OR NOT: OR NOT

Ladder Symbols Operand Data Area
5 - B: Bit CIO, G, A T,C, ST, TN
—
B Mnemonics
OR NOT IOR NOT
Description These six basic instructions correspond to the conditions on a ladder diagram.

Precautions

Flags

122

As described in Section 4 Writing Programs, the status of the bits assigned to
each instruction determines the execution conditions for all other instructions.
Each of these instructions and each bit address can be used as many times as
required. Each bit can be used in as many of these instructions as required.

The status of the bit operand (B) assigned to LD or LD NOT determines the first
execution condition. AND takes the logical AND between the execution condi-
tion and the status of its bit operand; AND NOT, the logical AND between the
execution condition and the inverse of the status of its bit operand. OR takes the
logical OR between the execution condition and the status of its bit operand; OR
NOT, the logical OR between the execution condition and the inverse of the sta-
tus of its bit operand.

These six instructions use only one word of program memory, not two, when the
operand is in the CIO Area between CIO 000000 and CIO 051115, saving pro-
gram memory and reducing the instruction execution time. Two words of pro-
gram memory are required for all other operands.

TR bits are added to the program automatically when creating the program with
the ladder diagram using the CVSS. Input TR bits only when inputting the pro-
gram with mnemonics. The ladder symbol for loading TR bits is different from
that shown above for LD and LD NOT. Refer to 4-3-3 Ladder Instructions for de-
tails.

There is no limit to the number of any of these instructions, or restrictions in the
order in which they must be used, as long as the program memory capacity of
the PC is not exceeded.

There are no flags affected by these instructions.

Ladder Diagram Instructions Section 5-6

5-6-2 CONDITION ON/OFF: UP(018) and DOWN(019) (CVML1 V2)

Description

Precautions

Ladder Symbols

(018)
—L up

(019)

—1 powN}—

UP(018) turns ON the execution condition for one cycle at the rising edge (OFF
to ON) of the execution condition and then turns OFF the execution condition
until the next time a rising edge is detected.

DOWN(019) turns ON the execution condition for one cycle at the falling edge
(ON to OFF) of the execution condition and then turns OFF the execution condi-
tion until the next time a falling edge is detected.

Another instruction must follow UP(018) or DOWN(019), i.e., they cannot be
used as right-hand instructions.

Be careful when using UP(018) and DOWN(019) in subroutines between IL and
ILC, and between JMP and JME instructions, because the execution condition
may remain ON for more than one scan. Refer to 5-8 INTERLOCK and INTER-
LOCK CLEAR: IL(002) and ILC(003), 5-9 JUMP and JUMP END: JMP(004) and
JME(005), and 5-30 Subroutines and 5-31 Interrupt Control for details.

UP(018) and DOWN(019) can only be used with CVM1 version 2 or later CPUSs.
They cannot be used with version 1 or earlier CPUs; use DIFU(013) and
DIFD(014). Refer to 5-7-2 DIFFERENTIATE UP/DOWN: DIFU(013) and
DIFD(014).

The DIFU(013) and DIFD(014) instructions can also be used for the same pur-
pose, but they require work bits. UP(018) and DOWN(019) simplify program-
ming by reducing the number of work bits and program addresses needed.

Flags There are no flags affected by UP(018) or DOWN(019).
Example The timing chart illustrates the operation of UP(018) and DOWN(019) in the fol-
lowing example.
0000 0001 Address | Instruction | Operands
° 1RO - O18) - o 00001 | LD 000001
| Lo O 00002 | OR 000002
o0 o0 00003 | OUT TRO
— | £ bown] O— 00004 | UP(018)
00005 | ouT 00101
00006 | LD TRO
00007 | DOWN(019
Input CIO 000001 00008 | out 000102

Input CIO 000002

T
I
I
!
i
i
|
T
|
1
'

Output CIO 000101

A

i
Output CIO 000102 _

t: Cycle time

123

Ladder Diagram Instructions Section 5-6

5-6-3 BIT TEST: TST(350) and TSTN(351) (CVM1 V2)
Ladder Symbol Operand Data Areas
(350) S: Source word ClO, G, A, DM, DR, IR
LTsTsn] N: Bit number CIO, G, A, T, C, #, DM, DR, IR
(351)
——LrsTNSN }—
Description TST(350) turns ON the execution condition when the specified bit in the speci-

fied word is ON and turns OFF the execution condition when the bit is OFF.

TSTN(351) turns OFF the execution condition when the specified bit in the spe-
cified word is ON and turns ON the execution condition when the bit is OFF.

The bit position is designated in N between 0000 and 0015 in BCD.

Precautions TST(350) and TSTN(351) cannot be used as right-hand instructions, i.e., anoth-
er instruction must appear between them and the right bus bar.

N must be BCD between 0000 and 0015.

Note: Refer to page 115 for general precautions on operand data areas.

Flags ER (A50003): N is not 0000 to 0015 BCD.
Content of xDM word is not BCD.

Example In the first instruction line below, when CIO 000000 turns ON, TST(350) checks
whether the designated bit (bit 00 in D00010) is ON or OFF. In this case, because
it is ON, CIO 005000 is turned ON.

In the second instruction line below, when CIO 000001 turns ON, TST(350)
checks whether the designated bit (bit 05 in D00020) is ON or OFF. In this case,
because it is OFF, CIO 005001 is turned ON.

Address | Instruction | Operands
0000 0050
00 (350) 00 00000 (LD 000000
.

_“—l TST D00010 #0000 _f O 00001 TST(350)
0600 st 0020 D00010
— |—————1 7sTN Dpoooz20 #0005 } O— #0000
00002 |OUT 005000
00003 |LD 000001

00004 [TSTN(351)
D00020
#0005
00005 |[OUT 005001

1514131211109 8 76 543210
DOOOIL1O 1011010110110001‘
A

Designated bit

1514131211109 8 76 54 3 2 10
pooo20;j0100101 101011101

Designated bit

124

Ladder Diagram Instructions Section 5-6

5-6-4 NOT: NOT(010)

Description

Precautions

Ladder Symbol

(010)
——NOoT }—

NOT(010) reverses the execution condition.

NOT(010) is an intermediate instruction that inverts the execution condition that
precedes it. As an intermediate instruction, it cannot be placed at the end of an
instruction line, only between conditions or between a condition and a right-hand
instruction.

NOT(010) cannot be used as right-hand instructions, i.e., another instruction
must appear between them and the right bus bar.

Flags There are no flags affected by NOT(010).
Example The following example and bit status table show the operation of NOT(010).
0880 0835 oo01) 0835 Address | Instruction |Operands
— | i} f{NnoT }——O— 00000 LD 000000
0(1330 00001 OR 000012
] 00002 AND 000502
00003 NOT(010) [---
- (001) 00004 ouT 000505
L END
00005 END(001) [---

Bit Bit status
000000 ON OFF ON OFF ON OFF ON OFF
000012 ON ON OFF OFF ON ON OFF OFF
000502 ON ON ON ON OFF OFF OFF OFF
000505 OFF OFF OFF ON ON ON ON ON

5-6-5 AND LOAD and OR LOAD

AND LOAD: AND LD

OR LOAD: OR LD

000000

Ladder Symbol

1L
1/
000001 !
1l '

)

.....

Ladder Symbol
1 000000 000001 1
P4
JLY A N
oIzt
y 000002 000003 '
|1]|
LS A o

Description

Flags

When instructions are combined into blocks that cannot be logically combined
using only OR and AND operations, AND LD and OR LD are used. Whereas
AND and OR operations logically combine a bit status and an execution condi-
tion, AND LD and OR LD logically combine two execution conditions, the current
one and the last unused one.

AND LD and OR LD are not necessary when drawing ladder diagrams or when
inputting ladder diagrams using ladder diagram programming. They are re-
quired, however, to convert the program to and input it in mnemonic form.

In order to reduce the number of programming instructions required, a basic un-
derstanding of logic block instructions is required. For an introduction to logic
blocks, refer to 4-4-1 Logic Block Instructions.

There are no flags affected by these instructions.

125

Bit Control Instructions

Section 5-7

5-7 Bit Control Instructions

The instructions in this section are used to control bit status. These instructions
are used to turn bits ON and OFF in different ways.

5-7-1 OUTPUT and OUTPUT NOT: OUT and OUT NOT

OUTPUT: OUT
Ladder Symbols Operand Data Area
:B B: Bit CIO, G, A, TR
B
@ Mnemonics
ouT 1 OuUT

OUTPUT NOT: OUT NOT

Ladder Symbols

&
5

Operand Data Area

B: Bit CIO, G, A
Mnemonics

OUT NOT 1 OUT NOT

Description

Precautions

Flags

126

Note:

OUT and OUT NOT are used to control the status of the designated bit according
to the execution condition.

OUT turns ON the designated bit for an ON execution condition, and turns OFF
the designated bit for an OFF execution condition. With a TR bit, OUT appears at
a branching point rather than at the end of an instruction line. Refer to 4-5
Branching Instruction Lines for detalils.

OUT NOT turns ON the designated bit for a OFF execution condition, and turns
OFF the designated bit for an ON execution condition.

OUT and OUT NOT can be used to control execution by turning ON and OFF bits
that are assigned to conditions on the ladder diagram, thus determining execu-
tion conditions for other instructions. This is particularly helpful and allows a
complex set of conditions to be used to control the status of a single work bit, and
then that work bit can be used to control other instructions.

The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT with TIM. Refer to Examples under 5-13-1 TIMER: TIM for
details.

Any output bit is generally used in only one instruction that controls its status.

Refer to page 115 for general precautions on operand data areas.

There are no flags affected by these instructions.

Bit Control Instructions

Section 5-7

5-7-2 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014)

DIFFERENTIATE UP: DIFU(013)

Ladder Symbol Operand Data Area
_(013) B: Bit CIO, G, A
{DFU B]

Variations

IDIFU(013)

DIFFERENTIATE DOWN: DIFD(014)

Ladder Symbol Operand Data Area
_(014) B: Bit CIO, G, A
[DFD B]
Variations
IDIFD(014)
Description DIFU(013) and DIFD(014) are used to turn the designated bit ON for one cycle

Precautions

Flags

Note:

only.

Whenever executed, DIFU(013) compares its current execution with the pre-
vious execution condition. If the previous execution condition was OFF and the
current one is ON, DIFU(013) will turn ON the designated bit. If the previous
execution condition was ON and the current execution condition is either ON or
OFF, DIFU(013) will either turn the designated bit OFF or leave it OFF (i.e., if the
designated bit is already OFF). The designated bit will thus never be ON for long-
er than one cycle, assuming it is executed each cycle (see Precautions, below).

Whenever executed, DIFD(014) compares its current execution with the pre-
vious execution condition. If the previous execution condition is ON and the cur-
rent one is OFF, DIFD(014) will turn ON the designated bit. If the previous execu-
tion condition was OFF and the current execution condition is either ON or OFF,
DIFD(014) will either turn the designated bit OFF or leave it OFF. The desig-
nated bit will thus never be ON for longer than one cycle, assuming it is executed
each cycle (see Precautions, below).

These instructions are used when differentiated instructions (i.e., those prefixed
with a 1 or {,) are not available and single-cycle execution of a particular instruc-
tion is desired. They can also be used with non-differentiated forms of instruc-
tions that have differentiated forms when their use will simplify programming.
Examples of these are shown below.

Any output bit is generally used in only one instruction that controls its status.

DIFU(013) and DIFD(014), operation can be uncertain when the instructions are
programmed between IL and ILC, between JMP and JME, or in subroutines. Re-
fer to 5-8 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003), 5-9
JUMP and JUMP END: JMP(004) and JME(005), and 5-30 Subroutines and
5-31 Interrupt Control for details.

Refer to page 115 for general precautions on operand data areas.

There are no flags affected by these instructions.

127

Bit Control Instructions

Section 5-7

Example 1: Use when
There’s No Differentiated
Instruction

In diagram A, below, whenever MOVQ(037) is executed with an ON execution
condition it will move the contents of CIO 1200 to AOO1. If the execution condition
remains ON, the content of AO0O1 will be changed each cycle that the content of
CIlO 1200 changes. Diagram B, however, is an example of how DIFU(013) can
be used to ensure that MOVQ(037) is executed only once each time the desired
execution condition goes ON. Here, the contents of A001 will remain the same
until CIO 022500 goes from OFF to ON.

0880 037 Address | Instruction |Operands
1} {MovQ 1200 A0001J—| 00000 | LD 000000
Diagram A 00001 | MOVQ(037)
1200
A001
0880
013 .
T E(DIH)J 022500 Address | Instruction |Operands
0225 00000 LD 000000
00 (037) 00001 | DIFU(013) | 022500
1| [MOVQ 1200 A00OL
I Diagram B 00002 | LD 022500
00003 | MOVQ(037)
1200
A001

Note: UP(018) and DOWN(019) can also be used to control differentiated execution of

Example 2: Use to Simplify
Programming

instructions. Refer to page 123 for details.

Although a differentiated form of MOV/(030) is available, the following diagram
would be very complicated to draw using it because only one of the conditions
determining the execution condition for MOV(030) requires differentiated treat-
ment.

Address | Instruction |Operands

0000 0000 0000
01 02 03
0000 0000
04 05

—— -

128

0000 00000 LD 000000
00

(013) 00001 | DIFU(013)| 022500
I [DIFU 022500 }—
o025 - 00002 | LD 022500
f? -(030) 00003 LD 000001
1l {vovV 1210 D00000 J—j 00004 | ANDNOT | 000002

00005 | AND NOT | 000003
00006 | ORLD
00007 | LD 000004
00008 | AND NOT | 000005
00009 | ORLD
00010 | MOV(030)

1210
D00000

Bit Control Instructions Section 5-7

5-7-3 SET and RESET: SET(016) and RSET(017)

SET: SET(016)

Ladder Symbol Operand Data Area
_(016) B: Bit ClO, G, A
[seT B]

Variations

1SET(016) JSET(016) ISET(016)

I1SET(016) IVSET(016)

RESET: RSET(017)

Ladder Symbol Operand Data Area
- (017) B: Bit CIO, G, A
[RSeET B]
Variations
YRSET(017) JRSET(017) IRSET(017)
I"RSET(017) IWRSET(017)
Description SET(016) turns the operand bit ON when the execution condition is ON, and

does not affect the status of the operand bit when the execution condition is OFF.
RSET(017) turns the operand bit OFF when the execution condition is ON, and
does not affect the status of the operand bit when the execution condition is OFF.
The operation of SET(016) differs from that of OUT because the OUT instruction
turns the operand bit OFF when its execution condition is OFF. Likewise,
RSET(017) differs from OUT NOT because OUT NOT turns the operand bit ON
when its execution condition is OFF.

The following example shows the operations of the variations of SET(016).

0? ~ [016) —,—_
I {{SET " 000100 }— 000000
0900
(016) |
| r 000100
| [ISET 000101 }—
0000 |
0? - (016) 000101
| [#SET 000102 }—
0000 000102 —I
0? - (016)
} [SET 000103 }—
000103 —I
0000 0001
00 04
| O
' S e
000104
0000 0001
00 05
| O I_l
1 000105
0900
(013) | |
| r
} { DIFU 000106 }— 000106

129

Bit Control Instructions

Section 5-7

Precautions

Note:

The status of operand bits for SET(016) and RSET (017) programmed between
IL(002) and ILC(003) or JIMP(004) and JME(005) will not change when the inter-
lock or jump condition is met (i.e., when IL(002) or JMP(004) is executed with an
OFF execution condition).

Refer to page 115 for general precautions on operand data areas.

Flags There are no flags affected by these instructions.
Example In the example below, CIO 050000 is turned ON whenever CIO 000000 is ON,
and turned OFF whenever CIO 000001 is ON.
0880 (016) Address | Instruction | Operands
— | {{ SET 050000 }— 00000 |LD 000000
00001 [SET(016) 050000
%0° %8° 00002 |LD 050000
— | O— 00003 |OUT 005000
0000 00004 |[LD 000001
o1 ©017) 00005 |[RSET(017) 050000
—“ [RSET 050000 }—
5-7-4 MULTIPLE BIT SET/RESET: SETA(047)/RSTA(048) (CVM1 V2)

Ladder Symbol
(047)
—— SETADN; N,

(048)
— RSTADN; N,

Variations
1 SETA(047), 1 RSTA(048)

Operand Data Area

] D: Rightmost word for set
N1: Beginning bit

] N,: Number of bits

CIO, G, A
CIO, G, A, T,C, # DM, DR, IR

CIO, G, A, T,C, # DM, DR, IR

Description

130

When the execution condition is OFF, SETA(047) is not executed. When the
execution condition is ON, SETA(047) turns ON a designated number of bits,
beginning from the designated bit of the designated word, and continuing to the
left (more-significant bits). All other bits are left unchanged.

Rightmost word

- ;
Number of bits

1

Unchanged Unchanged

Beginning bit

When the execution condition is OFF, RSTA(048) is not executed. When the
execution condition is ON, RSTA(048) turns OFF a designated number of bits,
beginning from the designated bit of the designated word, and continuing to the
left (more-significant bits). All other bits are left unchanged.

Rightmost word
T
lol. - « o« |0
Unchanged Number of bits Unchanged
Beginning bit

Bit Control Instructions Section 5-7

Precautions N1 must be between 0000 and 0015 and must be BCD. N, must be BCD.

Note: Refer to page 115 for general precautions on operand data areas.

Flags ER (A50003): N;j is not 0000 to 0015 BCD.
N> is not BCD.
Content of xDM word is not BCD.

Example 1 SETA Operation
When CIO 000000 turns ON in the first instruction line in the following example,
eight bits beginning with bit 08 in CIO 0005 are all turned ON.

RSTA Operation
When CIO 000001 turns ON in the second instruction line, the eight bits begin-
ning with bit 12 in CIO 0010 are all turned OFF.

Address | Instruction | Operands
%8° (047) 00000 |[LD 000000
—||—C SETA 0005 #0008 #0008] 00001 | SETA(047)
0900 048) 0005
—F——Ff RstA0010 #0012 #0004 #0008
#0008
00002 |[LD 000001
00003 [RSTA(048)
0010
#0012
#0004
MSB LSB
1514131211109 8 76 54 3 2 1 0
CIO 0005 | IR AR IR R R Unchanged J
MSB l.SB
1514131211109 8 76 5432 10
CIO 0010 | 0000 Unchanged J
Example 2 SETA Operation
When CIO 000000 turns ON in the first instruction line in the following example,
32 bits beginning with bit 08 in CIO 0005 are all turned ON.
RSTA Operation
When CIO 000001 turns ON in the second instruction line, 24 bits beginning with
bit 12 in CIO 0010 are all turned OFF.
0000 Address | Instruction | Operands
00 (047)
p—————F 'seTA 0005 #0008 #0032] 00000 |LD 000000
0990 o 00001 | SETA(047) —
]
RSTA 0010 #0012 #0024 70008
#0032
00002 |[LD 000001
00003 [RSTA(048)
0010
#0012
#0024

131

Bit Control Instructions Section 5-7

MS8 LSB
1514131211109 8 7 6 543 210
ClIO0005 |1 1 1+ 1 1111 Unchanged
cloooos {1 11 11 111 LA T I A
1

1
S T T O B I

ClO 0007 Unchanged

MSB LSB
1514131211109 8 76543210

ClO0010 | g 0 0 0 Unchanged
ClO0011 |0 00000000000 O00GCDO

CIO 0012 Unchanged 0oo0g
5-7-5 KEEP: KEEP(011)
Ladder Symbol Operand Data Area
(011) B: Bit ClO, G, A
S _[keep B]
R
Variations
IKEEP(011)
Description KEEP(011) is used to maintain the status of the designated bit based on two

execution conditions. These execution conditions are labeled S and R. S is the
set input; R, the reset input. KEEP(011) operates like a latching relay that is set
by S and reset by R.

When S turns ON, the designated bit will go ON and stay ON until reset, regard-
less of whether S stays ON or goes OFF. When R turns ON, the designated bit
will go OFF and stay OFF until reset, regardless of whether R stays ON or goes
OFF. The relationship between execution conditions and KEEP(011) bit status is
shown below.

S execution condition ﬂ ﬂ

R execution condition

R =
]

Status of B

132

Bit Control Instructions

Section 5-7

KEEP(011) operates like the self-maintaining bit described in 4-7-4 Self-main-
taining Bits (Seal). The following two diagrams would function identically, though
the one using KEEP(011) requires one less instruction to program and would
maintain status even in an interlocked program section.

Address | Instruction |Operands
0000 0000 0005
02 08 00 00000 LD 000002
T O 00001 OR 000500
%0° 00002 | ANDNOT | 000003
— 00003 ouT 000500
0000 ‘
O% °r (IglElE)P 000500 — Add i
I L ress | Instruction |Operands
09% R 00000 | LD 000002
[00001 | LD 000003
00002 | KEEP(011) | 000500
Example KEEP(011) can be used to create flip-flops as shown below.
°§(§|’° 0:?20 . (gjé]ig)p oo Address | Instruction |Operands
1f vd L 00000 | LDt 000000
epeo o000 00001 | AND NOT | 000001
1l {| 00002 | LDt 000000
00003 | AND 000001
00004 | KEEP(011) | 000001
oooooo _[1 [1 1 [[]
]]
000001 __| I | | |

Precautions

Flags

Note:

Any output bit is generally used in only one instruction that controls its status.

Never use an input bit in a normally closed condition on the reset (R) for
KEEP(011) when the input device uses an AC power supply. The delay in shut-
ting down the PC’s DC power supply (relative to the AC power supply to the input
device) can cause the operand bit of KEEP(011) to be reset. This situation is
shown below.

Input Unit
(011)

° o — | S ['KEEP 120000]

Bits used in KEEP are not reset in interlocks. Refer to the 5-8 INTERLOCK and
INTERLOCK CLEAR: IL(002) and ILC(003) for detalils.

Refer to page 115 for general precautions on operand data areas.

There are no flags affected by this instruction.

133

INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003) Section 5-8

Example If a holding bit (default range: CIO 1200 to CIO 1499) is used, bit status will be
retained even during a power interruption. KEEP(011) can thus be used to pro-
gram bits that will maintain status after restarting the PC following a power inter-
ruption. An example of this that can be used to produce a warning display follow-
ing a system shutdown for an emergency situation is shown below. Bits 000002,
000003, and 000004 would be turned ON to indicate some type of error. Bit
000005 would be turned ON to reset the warning display. Bit 120000, which is
turned ON when any one of the three bits indicates an emergency situation, is
used to turn ON the warning indicator through 000500.

0000
02 s . (011)
} [KEEP 120000 }— Address | Instruction |Operands
%80 Indicates 00000 | LD 000002
— emergency 00001 | OR 000003
0000 00002 | OR 000004
- 00003 | LD 000005
0000 , 00004 | KEEP(011) | 120000
05 Resetinput
X R 00005 | LD 120000
| 00006 | OUT 000500
30 oo
i O— e
display

The status of I/O Area bits can be retained in the event of a power interruption by
turning ON the IOM Hold Bit and setting IOM Hold Bit Hold in the PC Setup. If the
IOM Hold Bit is not specified to be held in the PC Setup, all I/O Area bits will be
turned OFF when the power is turned ON. Be sure to restart the PC after chang-
ing the PC Setup; otherwise the new settings will not be used.

KEEP(011) can also be combined with TIM to produce delays in turning bits ON
and OFF. Refer to 5-13-1 TIMER: TIM for details.

5-8 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003)

INTERLOCK: IL(002)

INTERLOCK CLEAR: IL(003)

Ladder Symbol Ladder Symbol
(002) (003)
L] Lic]
Description IL(002) is always used in conjunction with ILC(003) to create interlocks. Inter-

134

locks are used to create program sections that are executed normally when a
specific execution condition is ON or reset when the specific execution condition
is OFF. Logically, the treatment is similar to enabling branching with TR bits, but
treatment of instructions between IL(002) and ILC(003) differs from that with TR
bits when the execution condition for IL(002) is OFF. The execution condition of
IL(002) is call the interlock condition and controls execution of the interlocked
section of program. When the interlock condition is ON, the program will be
executed as written.

INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003) Section 5-8

Differentiation in Interlocks

If the execution condition for IL(002) is OFF, the interlocked section between
IL(002) and ILC(003) will be treated as shown in the following table:

Instruction Treatment
OUT and OUT NOT Designated bit turned OFF.
TIM, TIMH(015), and TIML(121) Reset.
CNT, CNTR(012), TTIM(120), and MTIM(122) PV maintained.
KEEP(011), SFT(050) Bit status maintained.
DIFU(013) and DIFD(014) Not executed (see below).
All others Not executed.

IL(002) and ILC(003) do not necessarily have to be used in pairs. IL(002) can be
used several times in a row, with each IL(002) creating an interlocked section
through the next ILC(003). ILC(003) cannot be used unless there is at least one
IL(002) between it and any previous ILC(003).

Changes in the execution condition for DIFU(013), DIFD(014), or a differen-
tiated instruction are not recorded if the DIFU(013) or DIFD(014) is in an inter-
locked section and the execution condition for the 1L(002) is OFF. When
DIFU(013), DIFD(014), or a differentiated instruction is executed in an inter-
locked section immediately after the execution condition for the IL(002) has
gone ON, the execution condition for the DIFU(013), DIFD(014), or differen-
tiated instruction will be compared to the execution condition that existed before
the interlock became effective (i.e., before the interlock condition for IL(002)
went OFF). The ladder diagram and bit status changes for a DIFU(013) instruc-
tion in an interlock are shown below. The interlock is in effect while 000000 is
OFF. Bit 001000 is not turned ON at the point labeled A even though 000001 has
turned OFF and then back ON because the OFF status of 000001 just before A
was not detected while the interlock condition was OFF.

ON
000000 oFF

ON
001000 oFF

OE))E))O - I((L)oz) Address | Instruction |Operands
0:)(')0 = 00000 LD 000000
o1 ©013) 00001 IL(002)
{1 { DIFU 001000 }— 00002 | LD 000001
003) 00003 DIFU(013)| 001000
[ic J— 00004 ILC(003)

A
ON
000001 oFF

Precautions

Flags

Note:

There must be an ILC(003) following any one or more IL(002).

Although as many IL(002) instructions as are necessary can be used with one
ILC(003), ILC(003) instructions cannot be used consecutively without at least
one IL(002) in between, i.e., nesting is not possible. Whenever a ILC(003) is
executed, all interlocks between the active ILC(003) and the preceding ILC(003)
are cleared.

When more than one IL(002) is used with a single ILC(003), an error message
will appear when the program check is performed, but execution will proceed
normally.

Refer to page 115 for general precautions on operand data areas.

There are no flags affected by these instructions.

135

JUMP and JUMP END: JMP(004) and JME(005) Section 5-9

Example

0000

The following diagram shows IL(002) being used twice with one ILC(003).

?? r (002)] Address | Instruction |Operands
08(1)0 00000 LD 000000
00001 | IL(002)
Oiio Lmw - osu soos] Los 00002 | LD 000001
02 (002) 00003 T00511
-
{| I #0015
83" %82 00004 | LD 000002
N L P ront 0001 0010 }— svVi 00005 1L(002
' A - 210 0010 (002)
0881 00006 LD 000003
I} R 00007 AND NOT | 000004
0830 0885 00008 LD 000100
00009 C00001
1L
" C 0010
- (003) 00010 LD 000005
Lc 00011 | OUT 000502
00012 ILC(003)

When the execution condition for the first IL(002) is OFF, T0511 will be reset to
1.5 s, C0001 will not be changed, and 000502 will be turned OFF. When the
execution condition for the first IL(002) is ON and the execution condition for the
second IL(002) is OFF, T0511 will be executed according to the status of
000001, C0001 will not be changed, and 000502 will be turned OFF. When the
execution conditions for both the IL(002) are ON, the program will execute as
written.

5-9 JUMP and JUMP END: JMP(004) and JME(005)

JUMP: JMP(004)

Ladder Symbol

(004) N: Jump number CIO, G, A, T, C, #, DM, DR, IR

{ amp N]

Operand Data Area

JUMP END: JME(005)

Ladder Symbol Operand Data Area
- (005) N: Jump number #
five N
Description JMP(004) is always used in conjunction with JIME(005) to create jumps, i.e., to

136

skip from one point in a ladder diagram to another point. JMP(004) defines the
point from which the jump will be made; JME(005) defines the destination of the
jump. When the execution condition for JIMP(004) is ON, no jump is made and
the program is executed consecutively as written.

When the execution condition for IMP(004) is OFF, program execution will go
immediately to the first IME(005) in the program with the same jump number
without executing any instructions in between (See JUMP 0000, below, for ex-
ception). The status of timers, counters, bits used in OUT, bits used in OUT NOT,
and all other status controlled by the instructions between JMP(004) and
JME(005) will not be changed, except for TIM and TIMH(015), which continue
counting. Because all of instructions between JMP(004) and JME(005) are
skipped, jumps can be used to reduce cycle time.

JUMP and JUMP END: JMP(004) and JME(005) Section 5-9

Differentiation in Jumps

JUMP 0000

Precautions

Flags

Example

Only one JME(005) instruction per jump number should be used in a program. If
two or more JME(005) instructions with the same jump number are used in a
program, program execution will skip to the JME(005) instruction at the lowest
program address, even if it precedes the JMP(004) instruction. Programming
multiple JIMP(005) instructions for the same JME(004) instruction can be useful
in programming.

Although DIFU(013) and DIFD(014) are designed to turn ON the designated bit
for one cycle, they will not necessarily do so when written between JMP(004)
and JME(005). Once DIFU(013) or DIFD(014) has turned ON a bit, it will remain
ON until the next time DIFU(013) or DIFD(014) is executed again. In normal pro-
gramming, this means the next cycle. In a jump, this means the next time the
jump from JMP(004) to JME(005) is not made, i.e., if a bit is turned ON by
DIFU(013) or DIFD(014) and then a jump is made in the next cycle so that
DIFU(013) or DIFD(014) are skipped, the designated bit will remain ON until the
next time the execution condition for the JIMP(004) controlling the jump is ON.

When DIFU(013), DIFD(014), or a differentiated instruction is executed in an
jumped section immediately after the execution condition for the JIMP(004) has
gone ON, the execution condition for the DIFU(013), DIFD(014), or differen-
tiated instruction will be compared to the execution condition that existed before
the jump became effective (i.e., before the execution condition for JMP(004)
went OFF).

The PC Setup can be used to control the operation of jumps created using jump
number 0000. If multiple jumps with 0000 are disabled, jumps created with 0000
will operate as described above. If multiple jumps are enabled, any JMP 0000
instruction will jump to the next JME 0000 in the program (and not the first
JME 0000 in the program). When multiple jumps for 0000 are enabled, you can-
not overlap or nest the jumps, i.e., each JMP 0000 must be followed by a
JME 0000 before the next JMP 0000 in the program and each JME 0000 must
be followed by a JMP 0000 before the next JME 0000 in the program.

Even if the JMP condition is OFF, all instructions between JMP 0000 and
JME 0000 are still processed as NOPs, increasing the cycle time accordingly.

If the IMP condition is OFF when JMP 0001 through JMP 0999 are being used,
the program will jump directly to JIME(005). Any instructions between JMP(004)
and JME(005) are not executed at all, and the cycle time is shortened according-

ly.
The jump number N must be BCD between 0000 and 0999.

When JMP(004) and JME(005) are not used in pairs, an error message will ap-
pear when the program check is performed. If a JME(005) instruction precedes
a JMP(004) instruction with the same jump number, a loop might occur, so the
END(001) instruction is never executed, causing a Cycle Time Over error.

ER (A50003): Content of xDM word is not BCD when set for BCD.
Jump number is not BCD or not between 0000 and 0999.

JMP(004) in the program without a corresponding JME(005).
Also turns ON the Jump Error Flag A40213.

Examples of jump programs are provided in 4-6 Jumps.

137

CONDITIONAL JUMP: CJP(221)/CIPN(222) Section 5-10

5-10 CONDITIONAL JUMP: CJP(221)/CIPN(222) (CVM1 V2)
Ladder Symbol Operand Data Areas
(221) N: Jump number CIO, G, A, T, C, #, DM, DR, IR
—L cipN
(222)
—7L cipN
Description CJP(221) operates in the reverse of IMP(004). When the execution condition

turns ON, the program up until IME(005) is skipped. When the execution condi-
tion is OFF, the instructions after CJP(221) are executed normally.

The CIPN(222) operates similar to JIMP(004). When the execution condition is
ON, the instructions after CJPN(222) are executed normally. When the execu-
tion condition is OFF, the program up until JME(005) is skipped.

JMP(004), CJP(221), and CJPN(222) all operate differently, however, when
used in a block program. With IMP(004), the program jumps to JME(005) un-
conditionally. With CJP(221), the program jumps to JME(005) when the condi-
tion just before the CJP(221) instruction is ON. With CJPN(222), the program
jumps to JME(005) when the condition just before the CIJP(221) instruction is
OFF.

When a jump occurs, the status of outputs from the program (output bits, timers,
counters, shift registers, keep, etc.) is maintained and timing continues for TIM/
TIMH(015).

If there are two or more JME(005) instructions in a program for the same jump
number, the one at the lower address is valid and the ones at higher addresses

are ignored.
000
— —--1 %2]'13)#0100] When the execution condition (CIO 000000) is ON, the program
up to the IME(005) instruction with jump number 0100 is ignored.
- (005)
L UmExo0100 J
0900
| r (égli)N 40101 J When the execution condition (CIO 000001) is OFF, the program
up to the JIME(005) instruction with jump number 0101 is ignored.
- (005)
L UvEsxoi01]
Precautions The jump number (N) must be BCD between 0000 and 0999.
Flags ER (A50003): Content of xXDM word is not BCD when set for BCD.

Jump number is not BCD or not between 0000 and 0999.

CJP(221) or CIPN(222) in program without a corresponding
JME(005). Also turns ON the Jump Error Flag A40213.

138

Timer and Counter Instructions Section 5-13

5-11 END: END(001)

Description

Flags

Ladder Symbol

(001)
{END]

END(001) is required as the last instruction in any program, including all action
and transition programs. No instruction written after END(001) will be executed.
The END(001) instruction indicates the end of the relevant program for that
cycle. For SFC and ladder programming, it indicates the end of the relevant ac-
tion or transition program. For ladder programming alone, it indicates the end of
the entire program.

If there is no END(001) in a program, no instructions will be executed and the
error message “NO END INST” will appear.

END(001) turns OFF the ER, CY, GR, EQ, LE, and N Flags.

5-12 NO OPERATION: NOP(000)

Ladder Symbol
(000)
{ NoP]
Description NOP(000) is not generally required in programming. When NOP(000) is found in

Precautions

Example

Flags

a program, nothing is executed and the program execution moves to the next
instruction. When memory is cleared prior to programming, NOP(000) is written
at all addresses.

NOP(000) can only be used with mnemonic display, and not with ladder pro-
grams.

NOP(000) can be inserted in a program at the position where an instruction is to
be inserted later. Then when the instruction is inserted there will be no gap in the
addresses.

There are no flags affected by NOP(000).

5-13 Timer and Counter Instructions

Timers

The timer instructions in this section are used to create timers. Most timers re-
quire a timer number and a set value (SV). Timer numbers run from TO000
through T0511 in the CV500 or CVM1-CPUO1-EV2 and from TO00O through
T1023 in the CV1000, CV2000, CVM1-CPU11-EV2 or CVM1-CPU21-EV2, and
are used to access timer PVs and Completion Flags in memory areas set aside
specifically for this purpose.

TIML(121) and MTIM(122) do not require timer numbers. The PVs and Comple-
tion Flags for these timers are contained in addresses specified by the user
when inputting the instructions.

Any one timer number cannot be defined twice, i.e., once it has been used in any
of the timer instructions it cannot be used again unless the two timers are never
active simultaneously. If two timers share a single timer number, but are not used
simultaneously, a duplication error will be generated when the program is
checked, but the timers will operate normally. Once defined, a timer number can
be used as many times as required as an operand in other instructions to access
the present value and Completion Flag of the timer.

139

Timer and Counter Instructions Section 5-13

Counters

Set Values

T/C Numbers as Operands

140

Present values (PV) and Completion Flags for TIM and TIMH(015) timers are
refreshed as shown in the following table.

Instruction At execution At END(01) Interrupts
TIM PV refreshed and PV PV refreshed every
Completion Flag turned | refreshed 80 ms if cycle time
ON if PV is 0000. exceeds 80 ms.
TIMH using Not refreshed Not PV refreshed every
TOO00O0 to T0255 refreshed 10 ms and Completion
Flag turned ON if PV is
0000.
TIMH using PV refreshed and Not Not refreshed
T0256 to T1023 | Completion Flag turned | refreshed
ON if PV is 0000.

The counter instructions in this section are used to create counter. Most count-
ers require a counter number and a SV, and are connected to multiple instruction
lines which serve as input signals, resets, etc. TCNT(123), an SFC control
instruction, also requires a counter number. Refer to 5-37 SFC Control Instruc-
tions, for details on TCNT(123).

Any one counter number cannot be defined twice, i.e., once it has been used in
any of the counter instructions it cannot be used again unless the two counters
are never active simultaneously. If two counters share a single counter number,
but are not used simultaneously, a duplication error will be generated when the
program is checked, but the counters will operate normally. Once defined, a
counter number can be used as many times as required as an operand in other
instructions to access the present value and Completion Flag of the counter.

A timer or counter SV can be input as a constant or as a word address in a data
area. If an 1/0 Area word assigned to an Input Unit is designated as the word
address, the Input Unit can be wired so that the SV can be set externally through
thumbwheel switches or similar devices. Timers wired in this way can only be set
externally during RUN or MONITOR mode. All SVs, including those set external-
ly, must be in BCD.

Although set values may be set to O for timers and counters, it will disable them,
i.e., turn ON the Completion Flag immediately.

No prefix is required when using a timer or counter number as a definer in a timer
or counter instruction. Once a timer or counter number has been used to create
a timer/counter, it can be prefixed with T or C for use as an operand in various
instructions.

Timer and counter numbers can be designated as operands that require either
bit or word data. When designated as an operand that requires bit data, the timer
or counter number accesses a bit that functions as a Completion Flag that indi-
cates when the timer or counter has completed counting, i.e., the Completion
Flag, which is normally OFF, will turn ON when the timer has timed out or counter
counted out.

When designated as an operand that requires word data, the timer or counter
number accesses a memory location that holds the present value (PV) of the
timer or counter. The PV of a timer or counter can thus be used as an operand in
CMP(020), or any other instruction for which the Timer or Counter Area is al-
lowed.

Note that “T0000” is used to designate both the Completion Flag for the timer
and to designate the PV of the timer. The meaning of the term in context should
be clear, i.e., the first is always a bit operand and the second is always a word
operand. The same is true of all other timer or counter numbers.

Timer and Counter Instructions

Section 5-13

Indirect Addressing

&Caution

Timer and counter numbers for TIM, TIMH(015), TTIM(120), CNT, CNTR(012),
TIMW<013>, CNTW<014>, and TMHW<015> can be indirectly addressed us-
ing the Index Registers by moving the PC memory address of the PV of the timer
or counter number to the Index Register. PVs for timers TO000 through T1023
are contained in PC memory addresses $1000 through $13FF, and PVs for
counters C0000 through C1023 are contained in PC memory addresses $1800
through $1BFF. MOVR(036) can be used to move memory addresses for
Completion Flags to Index Registers.

If the Index Register doesn’t contain a valid address for a timer or counter PV, the
instruction will not be executed, and the ER (A50003) Flag will not be turned ON.

The following example shows a program section that uses indirect addressing to
define and start 100 timers with SVs contained in D00100 through D00199. IR0
contains the PC memory address of the timer PV and IR1 contains the PC
memory address of the timer Completion Flag.

DM address Content Function
D00100 0010 SV for TO000
D00101 0100 SV for TO001
D00102 0050 SV for T0O002
D00199 0999 SV for T0O099
Address | Instruction |Operands
ASQ0 00000 | LD A50013
(030)
: : MoV #1000 IR0 J— 00001 MOV(030)
#1000
036
[nslov)R T0000 IR1 — IRO
00002 MOVR(036)
(036) T0000
{MOVR 200000 IR2 — R1
(030) 00003 MOVR(036)
MoV #0100 D00000 }— 200000
IR2
(005)
{ JME" #0001 J— 00004 MOV(030) #0100
D00000
JIR2+ (030)
H, [T IR0+ *D00000 T 00005 JME(005) #0001
IR2+ 00006 LD NOT JR2+
IR1+ '
' 00007 TIM IR0+
1l O .
A|5(:0 *D00000!
13 (090) 00008 | LD IR1+
1} {{INC "~ P00000 J— 00009 | out JIR2+
(020) 00010 LD A50013
L [cmMp #0200 Do00OO] —@ 00011 INC(090)
A500 D00000
06 (004)
= I [avp #0001] 00012 | CMP(020) —
D00000
00013 LD A50006
00014 JMP(004) #0001

&Caution

Do not use jump number 0000 in the above type of programming.

141

Timer and Counter Instructions Section 5-13

The first MOV/(030) instruction moves the PC memory address of the PV for tim-
er TOO0O ($1000) to IRO. The first MOVR(036) instruction moves the PC
memory address of the Completion Flag for timer TO00O0 to IR1, and the second
one moves the starting address into IR2. The second MOV(030) instruction
moves the address (00100) of the DM word that contains the SV for timer TOO00
to DO0000. A50013 is an Always ON Flag.

JME(005) and JMP(004) form a loop in which the content of IR0, IR1, and
DO00000 are incremented by one each time the program executes the loop,
successively defining and starting the 100 timers TO00O through T0199. The
loop continues until the content of DOO00O is 0200, i.e., until all 100 timers have
been defined and started. A50006 is the Equals Flag.

The subroutine above is equivalent to the 400 instructions below.

5-13-1 TIMER: TIM

Address | Instruction |Operands

2880 00000 LD NOT 200000
11(LM 0000 D00100 }— 00001 M 0000
70000 2880 D00100
: O 00002 LD TOO000
2000 00003 ouT 200000
oL Frm o001 000101 F—] 00004 LD NOT 200001

I L 00005 TIM 0001
Too01 282 D00101
I O— 00006 | LD T0001
28(2)0 00007 ouT 200001
lf R 0002 D00102 }— 00008 LD NOT 200002
70000 2880 00009 TIM 0002
: O D00102
00010 LD TO002

~ =~ 00011 | OUT 200002

i X 4
lf LM 0099 D00199 }— ~ ~

T0099 2836 00396 LD NOT 200602
: O— 00397 TIM 0099
D00199

00398 LD TOO000

00399 ouT 200602

Ladder Symbol Operand Data Areas
N: Timer number #
—[TIM S :I
S: Set value CIO, G, A T,C, # DM, DR, IR
*Refer to page 141 for details on indirectly addressing timers.
Description A timer is activated when its execution condition goes ON and is reset (to SV)

142

when the execution condition goes OFF. Once activated, TIM measures in units
of 0.1 second from the SV. TIM accuracy is +0.0/-0.1 second.

The timer PV is updated when the TIM instruction is executed, during cyclic re-
freshing, or interrupt refreshing (when the cycle time exceeds 80 ms). Refer to
6-2 Cycle Time for details.

If the execution conditio