


www.vishay.com Vishay Semiconductors

# Optocoupler, Photodarlington Output, High Gain, With Base Connection





## DESCRIPTION

The H11B1, H11B2, H11B3 are industry standard optocouplers, consisting of a gallium arsenide infrared LED and a silicon photodarlington.

### **FEATURES**

- Isolation test voltage: 4420 V<sub>RMS</sub>
- Coupling capacitance, 0.5 pF
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912





### RoHS COMPLIANT

### **AGENCY APPROVALS**

- UL1577, file no. E52744
- cUL tested to CSA 22.2 bulletin 5A
- DIN EN 60747-5-5 (VDE 0884-5) available with option 1
- FIMKO EN60065, EN60950-1
- CQC: GB8898-2011, GB4943.1-2011

| ORDERING INFORMATION     |                            |                 |                   |
|--------------------------|----------------------------|-----------------|-------------------|
| H 1 1 B PART NUMBER      | # - X PA                   | 0 0 #           | Option 7 Option 9 |
| AGENCY CERTIFIED/PACKAGE |                            | CTR (%)         |                   |
| UL, FIMKO, CQC           | > 500                      | > 200           | > 100             |
| DIP-6                    | H11B1                      | H11B2           | H11B3             |
| SMD-6, option 7          | H11B1-X007T <sup>(1)</sup> | -               | -                 |
| SMD-6, option 9          | H11B1-X009                 | H11B2-X009T (1) | -                 |
| UL, FIMKO, CQC, VDE      | > 500                      | > 200           | > 100             |
| SMD-6, option 7          | H11B1-X017                 | -               | -                 |

### **Notes**

- Additional options may be possible, please contact sales office.
- (1) Also available in tubes, no "T" in the end.

| <b>ABSOLUTE MAXIMUM RATINGS</b> (T <sub>amb</sub> = 25 °C, unless otherwise specified) |                |                   |       |       |  |  |  |
|----------------------------------------------------------------------------------------|----------------|-------------------|-------|-------|--|--|--|
| PARAMETER                                                                              | TEST CONDITION | SYMBOL            | VALUE | UNIT  |  |  |  |
| INPUT                                                                                  |                |                   |       |       |  |  |  |
| Reverse voltage                                                                        |                | $V_{R}$           | 3     | V     |  |  |  |
| Forward continuous current                                                             |                | I <sub>F</sub>    | 60    | mA    |  |  |  |
| Power dissipation                                                                      |                | P <sub>diss</sub> | 100   | mW    |  |  |  |
| Derate linearly from 25 °C                                                             |                |                   | 1.33  | mW/°C |  |  |  |
| OUTPUT                                                                                 |                |                   |       |       |  |  |  |
| Collector emitter breakdown voltage                                                    |                | BV <sub>CEO</sub> | 25    | V     |  |  |  |
| Emitter collector breakdown voltage                                                    |                | BV <sub>ECO</sub> | 7     | V     |  |  |  |
| Collector base breakdown voltage                                                       |                | BV <sub>CBO</sub> | 30    | V     |  |  |  |
| Collector current (continuous)                                                         |                | I <sub>C</sub>    | 100   | mA    |  |  |  |
| Power dissipation                                                                      |                | P <sub>diss</sub> | 150   | mW    |  |  |  |
| Derate linearly from 25 °C                                                             |                |                   | 2     | mW/°C |  |  |  |

Rev. 1.8, 23-Jul-15 **1** Document Number: 83609



www.vishay.com

## Vishay Semiconductors

| <b>ABSOLUTE MAXIMUM RATINGS</b> (T <sub>amb</sub> = 25 °C, unless otherwise specified) |                |                  |             |       |  |  |  |  |
|----------------------------------------------------------------------------------------|----------------|------------------|-------------|-------|--|--|--|--|
| PARAMETER                                                                              | TEST CONDITION | SYMBOL           | VALUE UNIT  |       |  |  |  |  |
| COUPLER                                                                                |                | •                |             |       |  |  |  |  |
| Total package dissipation (LED plus detector)                                          |                | P <sub>tot</sub> | 260         | mW    |  |  |  |  |
| Derate linearly from 25 °C                                                             |                |                  | 3.5         | mW/°C |  |  |  |  |
| Storage temperature                                                                    |                | T <sub>stg</sub> | -55 to +150 | °C    |  |  |  |  |
| Operating temperature                                                                  |                | T <sub>amb</sub> | -55 to +100 | °C    |  |  |  |  |
| Lead soldering time at 260 °C                                                          |                |                  | 10          | s     |  |  |  |  |

### Note

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability

| <b>ELECTRICAL CHARACTERISTICS</b> (T <sub>amb</sub> = 25 °C, unless otherwise specified) |                                             |       |                    |      |      |      |      |
|------------------------------------------------------------------------------------------|---------------------------------------------|-------|--------------------|------|------|------|------|
| PARAMETER                                                                                | TEST CONDITION                              | PART  | SYMBOL             | MIN. | TYP. | MAX. | UNIT |
| INPUT                                                                                    |                                             |       |                    |      |      |      |      |
|                                                                                          | $I_{E} = 50 \text{ mA}$                     | H11B1 | $V_{F}$            | ı    | 1.1  | 1.5  | V    |
| Forward voltage                                                                          | IF = 30 IIIA                                | H11B2 | $V_{F}$            | ı    | 1.1  | 1.5  | V    |
|                                                                                          | I <sub>F</sub> = 10 mA                      | H11B3 | $V_{F}$            | ı    | 1.1  | 1.5  | V    |
| Reverse current                                                                          | V <sub>R</sub> = 3 V                        |       | I <sub>R</sub>     | ı    | -    | 10   | μΑ   |
| Junction capacitance                                                                     | $V_F = 0 V, f = 1 MHz$                      |       | Cj                 | -    | 50   | -    | pF   |
| OUTPUT                                                                                   |                                             |       |                    |      |      |      |      |
| Collector emitter breakdown voltage                                                      | $I_C = 1 \text{ mA}, I_F = 0 \text{ mA}$    |       | BV <sub>CEO</sub>  | 30   | -    | -    | V    |
| Emitter collector breakdown voltage                                                      | $I_E = 100 \mu A, I_F = 0 \text{ mA}$       |       | BV <sub>ECO</sub>  | 7    | -    | -    | V    |
| Collector base breakdown voltage                                                         | $I_C = 100 \mu A, I_F = 0 mA$               |       | BV <sub>CBO</sub>  | 30   | -    | -    | V    |
| Collector emitter leakage current                                                        | $V_{CE} = 10 \text{ V}, I_F = 0 \text{ mA}$ |       | I <sub>CEO</sub>   | -    | -    | 100  | nA   |
| COUPLER                                                                                  |                                             |       |                    |      |      |      |      |
| Saturation voltage collector-emitter                                                     | $I_F = 1 \text{ mA}, I_C = 1 \text{ mA}$    |       | V <sub>CEsat</sub> | -    | -    | 1    | V    |
| Capacitance (input to output)                                                            |                                             |       | C <sub>IO</sub>    | -    | 0.5  | -    | pF   |

### Note

• Minimum and maximum values were tested requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements

| CURRENT TRANSFER RATIO (T <sub>amb</sub> = 25 °C, unless otherwise specified) |                                              |       |                   |      |      |      |      |
|-------------------------------------------------------------------------------|----------------------------------------------|-------|-------------------|------|------|------|------|
| PARAMETER                                                                     | TEST CONDITION                               | PART  | SYMBOL            | MIN. | TYP. | MAX. | UNIT |
| DC current transfer ratio                                                     | V <sub>CE</sub> = 5 V, I <sub>F</sub> = 1 mA | H11B1 | CTR <sub>DC</sub> | 500  |      |      | %    |
|                                                                               |                                              | H11B2 | CTR <sub>DC</sub> | 200  |      |      | %    |
|                                                                               |                                              | H11B3 | CTR <sub>DC</sub> | 100  |      |      | %    |

| <b>SWITCHING CHARACTERISTICS</b> (T <sub>amb</sub> = 25 °C, unless otherwise specified) |                                                     |                  |      |      |      |      |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------|------------------|------|------|------|------|
| PARAMETER                                                                               | TEST CONDITION                                      | SYMBOL           | MIN. | TYP. | MAX. | UNIT |
| Switching times                                                                         | $I_F$ = 5 mA, $V_{CE}$ = 10 V, $R_L$ = 100 $\Omega$ | t <sub>on</sub>  |      | 5    |      | μs   |
|                                                                                         |                                                     | t <sub>off</sub> |      | 30   |      | μs   |

www.vishay.com

## H11B1, H11B2, H11B3

≥ 0.4

## Vishay Semiconductors

#### **SAFETY AND INSULATION RATINGS PARAMETER TEST CONDITION SYMBOL VALUE** UNIT Climatic classification According to IEC 68 part 1 55 / 100 / 21 Comparative tracking index CTI 175 $V_{ISO}$ 4420 Maximum rated withstanding isolation voltage t = 1 min $V_{RMS}$ 10 000 Maximum transient isolation voltage $V_{IOTM}$ V<sub>peak</sub> Maximum repetitive peak isolation voltage $V_{IORM}$ 890 $V_{peak}$ ≥ <del>10<sup>12</sup></del> $V_{IO} = 500 \text{ V}, T_{amb} = 25 \text{ }^{\circ}\text{C}$ Ω $R_{IO}$ Isolation resistance ≥ 10<sup>11</sup> $V_{IO} = 500 \text{ V}, T_{amb} = 100 \text{ }^{\circ}\text{C}$ Ω $R_{IO}$ 400 mW Output safety power $P_{SO}$ 275 Input safety current mA $I_{SI}$ °C 175 $T_S$ Safety temperature ≥ 7 Creepage distance mm ≥ 7 Clearance distance mm

### Note

Insulation thickness

### TYPICAL CHARACTERISTICS (T<sub>amb</sub> = 25 °C, unless otherwise specified)

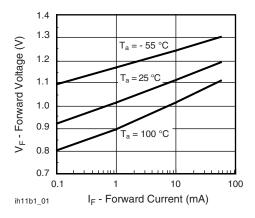
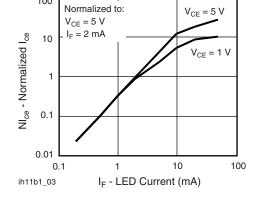




Fig. 1 - Forward Voltage vs. Forward Current



DTI

Fig. 3 - Normalized Non-Saturated and Saturated  $I_{\text{CE}}$  vs. LED Current

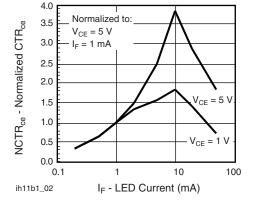



Fig. 2 - Normalized Non-Saturated and Saturated CTR<sub>CE</sub> vs. LED Current

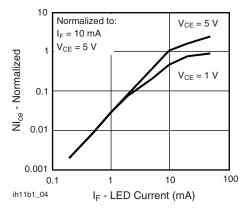



Fig. 4 - Normalized Non-Saturated and Saturated Collector Emitter Current vs. LED Current

As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with
the safety ratings shall be ensured by means of protective circuits



## Vishay Semiconductors



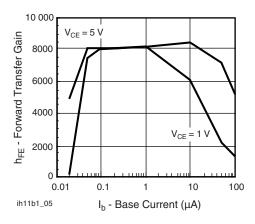



Fig. 5 - Non-Saturated and Saturated hFE vs. Base Current

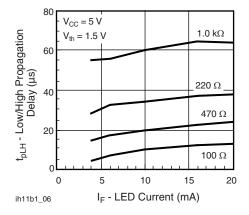



Fig. 6 - Low to High Propagation Delay vs. Collector Load Resistance and LED Current

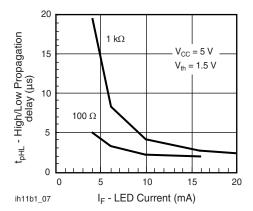



Fig. 7 - High to Low Propagation Delay vs. Collector Load Resistance and LED Current

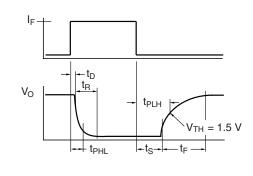
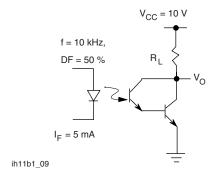
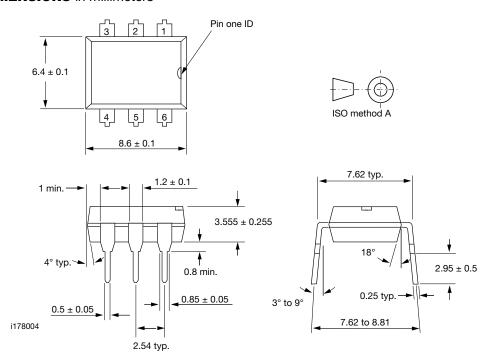
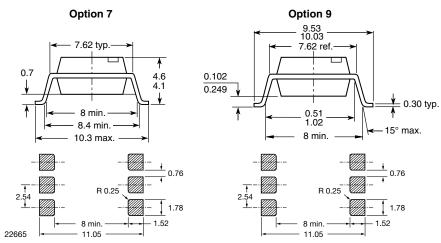


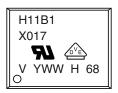

Fig. 8 - Switching Waveform

ih11b1\_08



Fig. 9 - Switching Schematic




Vishay Semiconductors

### **PACKAGE DIMENSIONS** in millimeters





### **PACKAGE MARKING** (example)



### **Notes**

- Only options 1, 7, and 9 are reflected in the package marking
- The VDE logo is only marked on option 1 parts
- Tape and reel suffix (T) is not part of the package marking



## **Legal Disclaimer Notice**

Vishay

## **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.