° SAM G55G / SAM G55
Altmel

Atmel | SMART ARM-based Flash MCU

DATASHEET

Description

The Atmel® | SMART SAM G55 is a series of Flash microcontrollers based on the
high-performance 32-bit ARM® Cortex®-M4 RISC processor with FPU (Floating
Point Unit). It operates at a maximum speed of 120 MHz and features 512 Khytes
of Flash and up to 176 Kbytes of SRAM. The peripheral set includes eight flexible
communication units comprising USARTS, SPIs and I12C-bus interfaces (TWIs),
two three-channel general-purpose 16-bit timers, two 12S controllers, one-channel
pulse density modulation, one 8-channel 12-bit ADC, one real-time timer (RTT)
and one real-time clock (RTC), both located in the ultra low-power backup area.

The Atmel | SMART SAM G55 devices have three software-selectable low-power
modes: Sleep, Wait and Backup. In Sleep mode, the processor is stopped while
all other functions can be kept running. In Wait mode, all clocks and functions are
stopped but some peripherals can be configured to wake up the system based on
events, including partial asynchronous wake-up (SleepWalking™). In Backup
mode, RTT, RTC and wakeup logic are running.

For power consumption optimization, the flexible clock system offers the capability
of having different clock frequencies for some peripherals. Moreover, the
processor and bus clock frequency can be modified without affecting the
peripheral processing.

The real-time event management allows peripherals to receive, react to and send
events in Active and Sleep modes without processor intervention.

The SAM G55 devices are general-purpose low-power microcontrollers that offer
high performance, processing power and small package options combined with a
rich and flexible peripheral set. With this unique combination of features, the SAM
G55 series is suitable for a wide range of applications including consumer,
industrial control and PC peripherals.

The device operates from 1.62V to 3.6V and is available in three packages:
49-pin WLCSP, 64-pin QFN and 64-pin LQFP.

t t ‘ M ™ Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15
Atmel SHART

Features

e Core

ARM Cortex-M4 with up to 16 Kbytes SRAM on I/D bus providing 0 wait state execution at up to
120 MHz @

Memory Protection Unit (MPU)
DSP Instructions

Floating Point Unit (FPU)
Thumb®-2 instruction set

Note: 1. 120 MHz with VDDCorext120 or with VDDCore trimmed by regulator.

e Memories

Up to 512 Kbytes embedded Flash
Up to 176 Kbytes embedded SRAM
8 Kbytes ROM with embedded boot loader, single-cycle access at full speed

e System

Embedded voltage regulator for single-supply operation
Power-on reset (POR) and Watchdog for safe operation

Quartz or ceramic resonator oscillators: 3 to 20 MHz with clock failure detection and 32.768 kHz for
RTT or system clock

High-precision 8/16/24 MHz factory-trimmed internal RC oscillator. In-application trimming access for
frequency adjustment

Slow clock internal RC oscillator as permanent low-power mode device clock
PLL range from 48 MHz to 120 MHz for device clock

PLL range from 24 MHz to 48 MHz for USB device and USB OHCI

Up to 30 peripheral DMA (PDC) channels

256-bit General-Purpose Backup Registers (GPBR)

16 external interrupt lines

e Peripherals

8 flexible communication units supporting:

e USART

e SPI

e Two-wire Interface (TWI) featuring TWI masters and high-speed TWI slaves
USB 2.0 Device and USB Host OHCI with On-chip Transceiver
2 Inter-IC Sound Controllers (I°S)
1 Pulse Density Modulation Interface (PDMIC) (supports up to two microphones)
2 three-channel 16-bit Timer/Counters (TC) with capture, waveform, compare and PWM modes
1 48-bit Real-Time Timer (RTT) with 16-bit prescaler and 32-bit counter
1 RTC with calendar and alarm features
1 32-bit Cyclic Redundancy Check Calculation Unit (CRCCU)

2 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e |/O
— Upto 48 1/0 lines with external interrupt capability (edge or level), debouncing, glitch filtering and on-
die series resistor termination. Individually programmable open-drain, pull-up and pull-down resistor
and synchronous output
— Two PIO Controllers provide control of up to 48 1/O lines
e Analog
— One 8-channel ADC, resolution up to 12 bits, sampling rate up to 500 kSps
e Package
— 49-lead WLCSP
— 64-lead LQFP
— 64-lead QFN
e Temperature operating range
— Industrial (-40° C to +85° C)

Atmel SAMG55 [DATASHEET] 3

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

4

Configuration Summary

Table 1-1 summarizes the SAM G55 device configurations.

Table 1-2. Configuration Summary
Feature SAM G55G19 SAM G55J19
Flash 512 Kbytes 512 Kbytes
Cache (CMCC) up to 8 Kbytes up to 8 Kbytes
160 Kbytes 160 Kbytes
SRAM +Up to 16KBytes (Cache +I/D RAM) + Up to 16KBytes (Cache +I/D RAM)
Package WLCSP49 QFN64, LQFP64
Number of PIOs 38 48
Event System Yes Yes
External Interrupt 16 16
8 channels 8 channels
Performance: Performance:
12-bit ADC 500 kSps 500 kSps
6 channels 6 channels
16-bit Timer (3 external channels) (3 external channels)
12SC/PDM 2 / 1-channel 2-way 2 / 1channel 2-way
PDC Channels 28 30
USART
SPI
Wi 7 8
TWIHS
USB Full Speed/OHCI Full Speed / OHCI
CRCCU 1 1
RTT 1 (backup area) 1 (backup area)
RTC 1 (backup area) 1 (backup area)

SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

2.

Figure 2-1.

TST
PCK[2:0]

ERASE +—P/

WKUP[15:0] +—|

XIN32 «—p|
XOUT32 +—P,|

XIN «—p
XOUT +—»

VDDIO

NRST <4—

VDDCORE —

Block Diagram

SAM G55 Block Diagram

JTAG and Serial Wire

5N

ortex-M4 Processor
fuax 120 MHz

In-Circuit Emulator

4-layer AHB Bus Matrix

M

M

S

fuuax 120 MHz
e L | >

RIS

______ N

AHB/APB
8 PDC
VUSB —»| Bridge
(64pins ONLY) System Controller
vA
PDMIC_DAT 4 »
PDMIC_CLK 4 >
12SCKO...1 >
12SWS0...1 >
12SDI0...1 4——»
12SD00...1 >
12SMCKO...1 4 >
FLEXCOM
SCK_SPCKO...

TXD_MOSI_TWDO...

RXD_MISO_TWCKO...

NNNNN
AAAAA

RTS_NPCS1_0...

YYVYY

CTS_NPCSONSS_0...

AD[7:0] <

ADTRG +

ﬁ

Flash
Unique
Identifier

User
Signature

| |

Flash
512 Kbytes

SRAM
160 Kbytes

ROM
8 Kbytes

—» TCLK[2:0]
—> TIOA[2:0]
> TIOB[2:0]

Atmel

SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

3. Signal Description

Table 3-1 gives details on the signal names classified by peripheral.

Table 3-1. Signal Description List
Active Voltage
Signal Name Function Type Level Reference Comments
Power Supplies
VDDIO ig@’g‘z@;’ 2&;2@5' Voltage Regulator, Power - - 1.62V to 3.6V
VDDOUT Voltage Regulator Output Power - - 1.08V to 1.32V
Connected externally
VDDCORE Core Chip Power Supply Power - - to VDDOUT or
VVDDCOREXT100 OF
VVDDCOREXT120
VUSB USB Power Supply Power - - gﬂgir?\g:it:geon
GND Ground Ground - - -
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input - VDDIO Reset state:
XOUT Main Oscillator Output Output - - - PIO input
XIN32 Slow Clock Oscillator Input Input - VDDIO ;1:2;%:23' pull-up
XOUT32 Slow Clock Oscillator Output Output - - - Schmitt Trigger
enabled
Reset state:
- P1O input
PCKO - PCK2 Programmable Clock Output Output - - - Internal pull-up
enabled
- Schmitt Trigger
enabled
ICE and JTAG
TCK Test Clock Input - VDDIO No pull-up resistor
TDI Test Data In Input - VDDIO No pull-up resistor
TDO Test Data Out Output — VDDIO -
TRACESWO Trace Asynchronous Data Out Output - VDDIO -
SWDIO Serial Wire Input/Output 110 - VDDIO -
SWCLK Serial Wire Clock Input - VDDIO -
TMS Test Mode Select Input - VDDIO No pull-up resistor
JTAGSEL JTAG Selection Input High VDDIO Pull-down resistor
Flash Memory
ERASE CF:IE;%Z:%NVM Configuration Bits Erase Input High VDDIO rPel;IiI;‘ctnlc?rwn (15 kQ)
Reset/Test
NRST Microcontroller Reset 110 ’ Low ’ VDDIO ‘ Pull-up resistor

6 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference Comments
TST Test Mode Select Input - VDDIO Pull-down resistor

P10 Controller - PIOA - PIOB

Pulled-up input at
PAO-PA31 Parallel /0 Controller A 1/0 - VDDIO reset. No pull-down
for PA3/PA4/PA14.

Pulled-up input at

PBO-PB15Y Parallel I/O Controller B o] - VvDDIO

reset

Wake-up Pins

Wake-up pins are
WKUPO0-15 Wake-up Pin / External Interrupt /0 - VDDIO used also as External

Interrupt

Serial Peripheral Interface - SPIx

MISOx Master In Slave Out I/10 - - -
MOSIx Master Out Slave In I/0 - - -
SPCKXx SPI Serial Clock I/0 - - High Speed Pad
NPCSO0x SPI Peripheral Chip Select 0 I/0 Low - -
NPCS1x SPI Peripheral Chip Select Output Low - -

Two-Wire Interface - TWIx

High Speed Pad for

TWDx TWIx Two-wire Serial Data /0 - - TWDO

High Speed Pad for

TWCKX TWIx Two-wire Serial Clock 110 - - TWDCKO

Universal Synchronous Asynchronous Receiver Transmitter USARTx

SCKx USART Serial Clock I/0 - - -
TXDx USART Transmit Data 110 - - -
RXDx USART Receive Data Input - - -
RTSx USART Request To Send Output - - -
CTSx USART Clear To Send Input - - -
Timer/Counter - TCx
TCLKXx TC Channel x External Clock Input Input - - -
TIOAX TC Channel x I/O Line A /0 - - -
TIOBXx TC Channel x I/O Line B /0 - - -

12-bit Analog-to-Digital Converter - ADCC

ADO-AD7 Analog Inputs Analog - - -
ADTRG ADC Trigger Input - - -
ADVREF ADC Voltage Reference Input _ _ Only available on

64-pin package

Inter-IC Sound Controller - I2SCx

I2SMCKx Master Clock Output ’ - ’ - -

Atmel SAMGS55 [DATASHEET] 7

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference Comments
12SCKXx Serial Clock /0 - - -
12SWSx 12S Word Select 110 - - -
12SDIx Serial Data Input Input - - -
12SDOX Serial Data Output Output - - -
PDMIC_CLK Pulse Density Modulation Clock Output - - -
PDMIC_DAT Pulse Density Modulation Data Input - - -
USB OHCI/FS/IC - USB
DM USB Data - WLCSP49:
VDDIO
Analog, _ DM and DP
DP USB Data + Digital 64-pin in PIO configuration
Package:
VDDUSB
Note: 1. Pull-up disabled on PB8/PB9.
8 SAMG55 [DATASHEET
[] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

4. Package and Pinout

Table 4-1. SAM G55 Packages

Device Package
SAM G55G19 WLCSP49
QFN64
SAM G55J19
LQFP64

41 49-ball WLCSP Pinout

Table 4-2. SAM G55G19 49-ball WLCSP Pinout
Al PA9 B6 NRST D4 PB10 F2 PA19/AD2
A2 GND B7 PB12 D5 PA1 F3 PA17/ADO
A3 PA24 C1 VDDCORE D6 PAS F4 PA21
A4 PB8/XOUT c2 PA11l D7 VDDCORE F5 PA23
A5 PB9/XIN C3 PA12 El PB2/AD6 F6 PA16
A6 PB4 C4 PB6 E2 PBO/AD4 F7 PA8/XOUT32
A7 VDDIO C5 PA4 E3 PA18/AD1 Gl VDDIO
Bl PB11 C6 PA3 E4 PA14 G2 VDDOUT
B2 PB5 C7 PAO ES PA10 G3 GND
B3 PB7 D1 PA13 E6 TST G4 VDDIO
B4 PA2 D2 PB3/AD7 E7 PA7/XIN32 G5 PA22
B5 JTAGSEL D3 PB1/AD5 F1 PA20/AD3 G6 PA15
G7 PAG

Atmel SAMG55 [DATASHEET] 9

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

4.2 64-lead QFN/LQFP Pinout

4.2.1 64-lead QFN/LQFP Pinout
Table 4-3. SAM G55J19 64-pin LQFP and QFN pinout

1 VDDIO 17 PAG6 33 PA17 49 PA9

2 NRST 18 PA16 34 PA18 50 PBS

3 PB12 19 PA30 35 PA19 51 PA27

4 PA4 20 PA29 36 PA20 52 PA26

5 PA3 21 PA28 37 PBO 53 GND

6 PAO 22 PA15 38 PB1 54 PB6

7 PA1 23 PA23 39 PB2 55 PB7

8 PAS 24 PA22 40 PB3 56 PA25

9 VDDCORE 25 PA21 41 PA14 57 PB13
10 TEST 26 VDDUSB 42 PA13 58 PA24
11 PA7 27 VDDIO 43 PA12 59 PB8/XOUT
12 PA8 28 ADVREF 44 PA11 60 PBY/XIN
13 GND 29 GND 45 VDDCORE 61 PA2
14 PB15 30 VDDOUT 46 PB10 62 PB4
15 PB14 31 VDDIO a7 PB11 63 JTAGSEL
16 PA31 32 VDDIO 48 PA10 64 VDDIO

Note: The bottom pad of the QFN package must be tied to ground.

10 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

5.1

5.2

521

Power Considerations

Power Supplies

The SAM G55 has the following power supply pins:

e VDDCORE pins: Power the core, including the processor, the embedded memories and the peripherals,
except the RTC, RTT, and Supply controller (SUPC). It is recommended to connect VDDCORE to VDDOUT.

e VDDIO pins: Power the peripheral I/0O lines, RTC, RTT, and SUPC peripherals, voltage regulator and ADC;
voltage ranges from 1.62V to 3.6V.

e VDDUSB pins: Power the USB (only for devices with 64-pin package), voltage ranges from 3.0V to 3.6V.
The ground pins GND are common to VDDCORE and VDDIO.

Power-up Considerations

In order to prevent any overcurrent at power-up, it is recommended to connect pin ADVREF to VDDIO, or to get
ADVREF to rise as much as possible at the same time as VDDIO.

Note: Pin ADVREF is only available on 64-pin packages QFN and LQFP.

VDDIO Versus VDDCORE

Vppio Must always be higher than or equal to Vppcogre-

Vppio Must reach its minimum operating voltage (1.62 V) before Vppcore has reached Vppcorext(min- The
minimum slope for Vppcoge is defined by (Vppcorextminy = Vrrs) / tres

If Vppcorext fises at the same time as Vpp,q, the Vpp o rising slope must be higher than or equal to 7V/ms.
If VDDCORE is powered by the internal regulator, all power-up considerations are met.

Figure 5-1. VDDCORE and VDDIO Constraints at Startup

Supply (V) 4
VDDIO
VDDIO(min)
VDDCORE
VDDCORE(mm)
VTH+
Time (t)

Core supply POR output

stek (TR AR

At power-down, there is no constraint on VDDCORE and VDDIO as the regulator must be enabled.

Atmel SAMG55 [DATASHEET] 11

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

5.3 Voltage Regulator

The SAM G55 embeds a core voltage regulator that is managed by the Supply Controller and that supplies the
Cortex-M4 core, internal memories (SRAM, ROM and Flash logic) and the peripherals. An internal adaptive
biasing adjusts the regulator quiescent current depending on the required load current.

For adequate input and output power supply decoupling/bypassing, refer to Table 39-4 “VDDCORE Voltage
Regulator Characteristics” in section Electrical Characteristics.

In case of dual supply, the voltage regulator must be enabled and VDDOUT must be used as input control of the
external DC/DC. This will allow a correct slope at first startup and for low power mode.

5.4 Typical Powering Schematics

The SAM G55 supports single and dual voltage supply, with VDDIO from 1.62V to 3.6V and VDDCore from
external DC/DC controlled by the internal regulator. Figure 5-2 and Figure 5-3 illustrate the power schematics.

To achieve system performances, the internal voltage regulator must be used.

5.4.1 Single supply

The SAM G55 supports a 1.62V to 3.6V single supply mode. The internal voltage regulator input is connected to
the source and its output feeds VDDCORE. Figure 5-2 illustrates the power schematics.

Figure 5-2. Single Supply
VDDUSB

(only on 64-pin !
packages) L

(3.0V-3.6V) II‘

VDDIO
—

Main Supply (1.62V-3.6V) VDDIN

lII Voltage
Regulator
VDDOUT I:D
I '
VDDCORE Ej
12 SAMGH55 [DATASHEET]
Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15 /I t m e L

5.4.2 Dual supply
In dual voltage supply, the voltage regulator must always be enabled and must be used as input control of the
external DC/DC, to control the slope of Vddcore after low power mode.

Figure 5-3. Dual Supply
VDDUSB

(only on 64-pin !
@ovaey Packases II‘
Main Supply (1.62V-3.6V) VDDIO

|
\
|
H
|
j
|
‘
VDDIN D_
|
|
\
I
VIN . Voltage
DC/DC VDDCORE Regulator
BNA vouThL:2v Ij:l g
:
\
|
0
|

VDDOUT D_

In Wait mode, by default, the voltage regulator is down to Vyppout Wait mode min value. Consequently, it must be
configured to keep VDDOUT in Running mode. To avoid any issue, the regulator must be configured by software
to deliver the correct supply voltage. To do this, use the following procedure:

e Read the unigue identifier bytes [65..64]
e Write the 4 LSB bits of unique identifier bytes [65..64] in SUPC_PWMR.LPOWERO-LPOWER3
e Enable SUPC_PWMR.LPOWERS

55 Functional Modes

5.5.1 Active Mode

Active Mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal
oscillator or the PLL. The power management controller can be used to adapt the frequency and to disable the
peripheral clocks.

5.5.2 Backup Mode

The purpose of Backup mode is to achieve the lowest power consumption possible in a system which is
performing periodic wake-ups to perform tasks but not requiring fast startup time.

The zero-power power-on reset, SUPC, RTT, RTC, general-purpose backup registers (GPBR) and 32 kHz
oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The regulator and the
core supply are off.

The SAMG55 can be awakened from this mode using the WKUPO-15 pins, the supply monitor (SM), the RTT, or
the RTC.

Backup mode is entered by writing a 1 to the VROFF bit of the Supply Controller Control Register (SUPC_CR) (a
key is needed to write the VROFF bit, refer to section Supply Controller SUPC) and with the SLEEPDEEP bit in the

Atmel SAMG55 [DATASHEET] 13

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Cortex-M4 System Control Register set to 1 (see power management description in section ARM Cortex-M4
Processor). To reduce consumption, the supply monitor on VDDIO can be disabled.
To enter Backup mode using the VROFF bit:
e Write a 1 to the VROFF bit of SUPC_CR.
To enter Backup mode using the WFE instruction:
e Write a 1 to the SLEEPDEEP bit of the Cortex-M4 processor.
e Execute the WFE instruction of the processor.
In both cases, exit from Backup mode happens if one of the following enable wake up events occurs:
WKUPENO-15 pins (level transition, configurable debouncing)
Supply Monitor alarm
RTC alarm
RTT alarm

5.5.3 Wait Mode

Wait mode allows the device to achieve very low power consumption levels while remaining in a powered state
with a wake-up time of less than a few us. In Wait mode, the clocks of the core, the peripherals and memories are
stopped. However, power supplies are maintained to ensure memory and CPU context retention.

The wake-up time is achieved when entry into and exit from Wait mode are performed in internal SRAM. The
wake-up time increases to 6.9 ps if entry into Wake-up mode is performed in internal Flash.

Wait mode is entered using either the WAITMODE bit in the PMC Clock Generator Main Oscillator register
(CKGR_MOR) or the Wait for Event (WFE) instruction. Before entering Wait mode, the POR core must be
disabled. Detailed sequences are provided below.

Note that the WFE instruction can add complexity in application state machines due to the fact that the WFE
instruction goes along with an event flag of the Cortex core (cannot be managed by the software application). The
event flag can be set by interrupts, a debug event or an event signal from another processor. Since an interrupt
can take place just before the execution of WFE, WFE takes into account events that happened in the past. As a
result, WFE prevents the device from entering Wait mode if an interrupt event has occurred. To work around this
complexity, follow the sequence using the WAITMODE bit described below.

The Cortex-M4 processor is able to handle external or internal events in order to wake up the core. This is done by
configuring the external lines WKUPO-15 as fast start-up wake-up pins (refer to Section 5.6 “Fast Start-up”) or the
RTT and RTC alarms, USB interrupt line or SleepWalking for FLEXCOMO-7 (USART/SPI/TWI) for internal events.
To enter Wait mode using the WAITMODE bit:

1. Selectthe 8/16/24 MHz fast RC oscillator as the Main Clock. If frequency of 24 MHz is selected and the code
is running from the SRAM.

2. Program the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR)"Y.

3. Set the number of Flash wait states to 1 by writing a one to the FWS field in the EEFC Flash Mode Register
(EEFC_MR).

4. Write a one to the WAITMODE bit in the CKGR_MOR.

5. Wait for MCKRDY =1 in the PMC Status Register (PMC_SR).

To enter Wait mode using the WFE instruction:

1. Select the 8/16/24 MHz fast RC oscillator as the Main Clock. If 24 MHz is selected and the code is running
on the SRAM.

2. Program the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR)™".

3. Set the number of Flash wait states to 1 by writing a one to the FWS field in the EEFC Flash Mode Register
(EEFC_MR).

14 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

4. Write a one to the LPM bit in PMC_FSMR.
5. Execute the Wait For Event (WFE) instruction of the processor.
Note: 1. Depending on the value of the field FLPM, the Flash enters three different modes:
® FLPM = 0: Flash in Stand-by mode (low power consumption levels)
e FLPM = 1: Flash in Deep power-down mode (extra low power consumption levels)
® FLPM = 2: Flash in Idle mode. Memory ready for Read access.
5.5.4 Sleep Mode

In Sleep mode, power consumption of the device versus response time is optimized. Only the core clock is
stopped. The peripheral clocks can be enabled. The current consumption in Sleep mode is application-dependent.

Sleep mode is entered via Wait for Interrupt (WFI) instructions.
The processor can be awakened from an interrupt if the WFI instruction of the Cortex-M4 is used.

Atmel SAMG55 [DATASHEET] 15

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

GT-AON-0E 193Ysered-rSS9-NVS-9559-INVS-INHV1Y-3682ZTT-[BWiv

91

[133HSV1Vvd] SSONVS

oWy

5.5.5 Low-Power Mode Configuration Summary
Table 5-1 summarizes the power consumption, wake-up time and system state in Wait mode and in Sleep mode.
Table 5-1. Low-Power Mode Recommended Configuration Summary
SUPC
32 kHz
Oscillator POR
RTT Supply RAM PIO State _
POR Monitoron| Power |CoreMemory Potential Wake-up | Core at |whilein Low-| PIO State at | Consumption Wake-up
Mode Regulator VDDIO | Switch | Peripherals Mode Entry Sources Wake-up | Power Mode | Wake-up @@ Time &
- WUPO-15 pins . PIOA & PIOB
) OFF VROFF =1 Previous state . Refer to B
Backup Mode ON OFF (Not powered) |+SLEEPDEEP bit = 1 IF?g(T: legrrm Reset saved Inputsu\'/)vgth pull Section 39-9
Any event from:
From all FLPM =1 Fast startup through
_ ‘ RAM + WAITMODE = 1 WKUP0-15 pins
\II:VIE:;mngeevggh powered Powered or EI(T: aIIarm Previous state Refer to Refer to
: ON OFF to SLEEPDEEP =0 alarm Clocked back Unchanged Section 39-10 |
ower-down I saved Section 39-11
P rode 8 Kbytes (Not clocked) T FLPM =1 USB device interrupt
RAM +LPM=1 line
powered + WFE FLEXCOM 0-7, ADC
SleepWalking
WFI Entry mode = WFI .
Sleep Mode ON ON Powered Powered + SLEEPDEEP = 0 interrupt only; Clocked back Prevslgszdstate Unchanged ® -
(Not clocked) +LPM=0 any enabled interrupt
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 8/16/24 MHz Fast RC

arwbn

oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first
instruction is fetched.

If the supply monitor is enabled, the Wake-up can be done through the SM.
The external loads on PIOs are not taken into account in the calculation.

BOD current consumption is not included.
Refer to Section “Power Consumption” in the Electrical Characteristics.

5.6 Fast Start-up

The SAM G55 allows the processor to restart in a few microseconds while the processor is in Wait mode. A fast
start-up can occur upon detection of a low level on one of the 18 wake-up inputs.

The fast restart circuitry is fully asynchronous and provides a fast start-up signal to the Power Management
Controller. As soon as the fast start-up signal is asserted, the PMC restarts from the last Fast RC selected (the
embedded 24 MHz Fast RC oscillator), switches the master clock on the last clock of RC oscillator and reenables
the processor clock. At the wake-up of Wait mode, the code is executed in the SRAM.

SAMGS55 [DATASHEET] 17

A t ' I IeL Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

6.

Figure 6-1.

18

Product Mapping

SAM G55 Product Mapping

Address memory space

0x00000000
Code
0x20000000 ..
Internal SRAM
0x40000000 .
Peripherals
0x60000000
Reserved
0xE0000000
System
OXFFFFFFFF
offset block .
peripheral

1D

(+ : wired-or)

SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

v
v

System Controller

Code
0x00000000 0x400E0000
Boot Memory 1
GPNVM[L]= 0 Boot Memory = ROM ! Reserved
GPNVM[1]= 1 Boot Memory = Flash '
0x00400000 0x400E0200
Internal Flash MATRIX
0x00800000 0X400E040b
N Internal ROM PMC
*+..’6x00C00000 0x400E0600 s
dS(iEFIEFFEE Reserved Reserved
o 1F~(~2~0 0000‘ Internal SRAM 0x400E0740
X .
e ' CHIPID
A RAM CMCC !
N0 20000006 0x400EQ800
o X ; Reserved
SRAM :
S 0x400EO0A00
Gx20400000 K
W : EFC
N UHP DPRAM : 6
OXZOC;SOOOO OX400'EOCOO
“.*. | Undefined (Abort) : Reserved
0x40000000 0x400EOE00
S - : PIOA
s Peripherals :
0x40000000 ; 11
250 0x4Q0E1000
0x40004000 16 : PIOB
12sC1 0X4D0E1200 12
0x40008000 17 E—
USART/TWI/SPIS :
0x4000C000 8 0x400E1400
USART/TWISPIO ; SYsC RSTC
0x40010000 | ! ox10 1
TCo ! SYSC
+0x40 23 ! SUPC
B 51 C O +0x30
+0x80 24 SYSC RTT
H Teo TC2 H 3
'\ 0x40014000 25 +0x50 Svse
\ Tc1 TC3 ! Y WDT
| 26 :
. RSN EverT ; +0x60 4
' TC4 B SYSC
| +OX80 [27 H RTC
: TCs be) 2
0x40018000 !
USART/TWI/SPI3 ! GPBR
0%4001C000 14 ! Ox400E1600
' USART/TWI/SPI4 10 reserved
040020000 | Ox400E3FFF
: USART/TWI/SPI1 : :
J 20 : ‘
0x40024000 : J
| USART/TWI/SPI2 :
0x40028000 21 '
\ MEM2MEM :
0x4002C000 15
| PDMICO :
0x40030000 13 ;
| PDMIC1
0Xx40034000 18
i USART/TWI/SPI7 : .
0x40038000
ADC H !
0x4003C000 291
cmcc
0x40040000 !
H USART/TWI/SPI6 .
0x40044000 ;
UDP !
0x40048000 o
\ CRCCU |
O0Xx400E0000 !
"‘ System Controller ;
0x400E4000, !
k Reserved
0x60000000

Atmel

7. Bootloader

The SAM G55 devices ship with a bootloader in ROM, used to download code, in internal Flash, either through the
SPI or through the TWI3.

The Bootloader mode is entered automatically on power-up if no valid firmware is detected in the Flash. A valid
firmware is detected by performing a CRC on the content of the Flash. If the CRC is correct, the application is
started. Otherwise, the Bootloader mode is entered.

Alternatively, the Bootloader mode can be forced by applying low pulses on the NRST line. The NRST should be
asserted 10 times for a minimum of 1 ps at an interval less than 50 ms. When the bootloader detects this
sequence, it asserts the pin PAO1 (NCHG) low as an acknowledge.

The Bootloader mode initializes the TWI3 in Slave Mode with the 12C address 0x26 and the SPI in Slave Mode, 8-
bit data length, SPI Mode 1.

Table 7-1 provides information on the pins used by the bootloader.

Table 7-1. Boot Loader Pin Description
Pin Name Function Bootloader Use Description

PAO1 NCHG Driven at 0 or pulled up Boot loader handshake
PAO3 TWD Open drain input/output TWI/12C data line
PAO4 TWCK Open drain input/output TWI/12C clock
PA11 NPCSO0/NSS Input NSS, SPI slave select
PA12 MISO Push-pull output SPI master in slave out
PA13 MOSI Input SPI master out slave in
PA14 SPCK Input SPI clock

For further details on bootloader operations, refer to the application note AT09002 — SAM Gx Series Bootloader on
www.atmel.com.

Atmel SAMG55 [DATASHEET] 19

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

http://www.atmel.com

8.1

8.2

8.3

8.3.1

20

Memories

Internal SRAM
The SRAM G55 embeds a total of 176 Kbytes of high-speed SRAM, accessible at address 0x1FFF_C000.

The 160 Kbytes of SRAM are accessible over the Cortex-M4 system bus at address 0x2000 0000. The SRAM is in
the bit band region. The bit band alias region is from 0x2200 0000 and 0x23FF FFFF. The SRAM is composed of
five blocks of 32 Kbytes. The five blocks have a power switch. Each power switch controls the supply of the SRAM
block to save power. The power switch control (SRAMXON) is in the SUPC_PWMR register (refer table 8-1).

The SRAM G55 also embeds up to 16 Kbytes of SRAM accessible at address Ox1FC0_0000. The 16 Kbytes of
SRAM can be assigned by the customer to Data Cache RAM and/or Tightly Coupled Memory (TCM) RAM
(CMCC) and on I/D bus following this configuration (PRGCSIZE) in the CMCC_CFG register:

e 2 KBytes of Data RAM Cache and 14 KBytes TCM RAM on I/D Bus (CMCC)
e 4 KBytes of Data RAM Cache and 12 KBytes TCM RAM on I/D Bus (CMCC)
e 8 KBytes of Data RAM Cache and 8 KBytes TCM RAM on I/D Bus (CMCC)

The 16 KBytes of SRAM (Data Cache/TCM SRAM) also has a power switch (CDPSWITCH) on SUPC_MR which
controls the supply of the block.

Table 8-1. SRAM Power Switch vs SRAM Block
Power Switch SRAM Block SRAM size Address SUPC_PWMR

0 Block 0 8 KBytes 0x2000_0000 SRAMOON
1 Block 0 8 KBytes 0x2000_2000 SRAM10ON
2 Block 0 16 KBytes 0X2000_4000 SRAM20ON
3 Block 1 32 KBytes 0x2000_8000 SRAM3ON
4 Block 2 32 KBytes 0x2001_0000 SRAM40N
5 Block 3 32 KBytes 0x2001_8000 SRAM50N
6 Block 4 32 KBytes 0x2002_0000 SRAM60ON
7 USB DPRAM - - DPRAMON

Internal ROM

The SAMG55 product embeds an Internal ROM.
At any time, the ROM is mapped at address 0x0080 0000.

Embedded Flash

Flash Overview

The memory is organized in sectors. Each sector comprises 128 Kbytes. The first sector of 128 Kbytes is divided
into three smaller sectors.

The three smaller sectors are comprised of two sectors of 8 Kbytes and one sector of 112 Kbytes.
Refer to Figure 8-1.

SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Figure 8-1. Global Flash Organization

Hash Organization
Sector size Sector name
8K Bytes Small Sector 0
8K Bytes Small Sector 1 Sector 0
112K Bytes Larger Sector
128K Bytes Sector 1
128K Bytes Sector n

Each sector is organized in pages of 512 bytes.

For sector O:
e The smaller sector 0 has 16 pages of 512 bytes.
e The smaller sector 1 has 16 pages of 512 bytes.
e The larger sector has 224 pages of 512 bytes.

From sector 1 to n:
e Therest of the array is composed of 128-Kbyte sectors of 256 pages of 512 bytes each. Refer to Figure 8-2.

Figure 8-2. Flash Sector Organization
Flash Sector Organization

A sector size is 64 KBytes

16 pages of 512 Bytes Smaller sector 0

Sector 0 16 pages of 512 Bytes | Smaller sector 1

224 pages of 512 Bytes | Larger sector

Sector n 256 pages of 512 Bytes

The SAM G55 Flash size is 512 Kbytes. Refer to Figure 8-3 for the organization of the Flash.

Atmel SAMG55 [DATASHEET] 21

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Figure 8-3. Flash Size
Hash 512 KBytes

2* 8 KBytes

1*112 KBytes

3* 128 KBytes

The following erase commands can be used depending on the sector size:
e 8 Kbyte small sector
— Erase and write page (EWP)
— Erase and write page and lock (EWPL)
— Erase sector (ES) with FARG set to a page number in the sector to erase

— Erase pages (EPA) with FARG [1:0] = 0 to erase 4 pages, FARG [1:0] = 1 to erase 8 pages or FARG
[1:0] = 2 to erase 16 pages. FARG [1:0] = 3 must not be used.

e 112 Kbyte and 128 Kbyte sectors
— One block of 16 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 2
— One block of 32 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 3

— One sector with the command Erase sector (ES) and FARG set to a page number in the sector to
erase

e Entire memory plane
— The entire Flash, with the command Erase all (EA)
The memory has one additional reprogrammable page that can be used as page signature by the user. It is

accessible through specific modes, for erase, write and read operations. Erase pin assertion will not erase the user
signature page.

22 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

8.3.1.1 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by the masters of the system. It enables
reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block.
It manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.

8.3.1.2 Flash Speed
The user needs to set the number of wait states depending on the frequency used:
For more details, refer to Section 39.9 “AC Characteristics”.

8.3.1.3 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of
several consecutive pages, and each lock region has its associated lock bit.

Table 8-2. Lock Bit Number
Product Number of Lock Bits Lock Region Size
SAM G55 64 8 Kbytes

If the erase or program command of a locked region occurs, the command is aborted and the EEFC triggers an
interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables
the protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

8.3.1.4 User Signature

Each device contains a user signature of 512 bytes. The user signature can be used to store customer information
such as trimming, keys, etc., that the customer does not want erased when asserting the ERASE pin or by
software ERASE command.

Read, write and erase of this area is allowed.

Atmel SAMG55 [DATASHEET] 23

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

8.3.15 Unique Identifier

The G55 Flash contains 2 pages of 512bytes called unique identifier. These 2 pages are read-only and cannot be
erased even by the Erase pin. Each device integrates its own 128-bit unique identifier. These bits are factory-
configured and cannot be changed by the user.

The sequence to read the unique identifier area is described in Section 23.4.3.8 “Unique Identifier Area”.

Some bytes within the unique identifier pages are reserved for the trimming information of the 32 kHz RC
Oscillator and the internal voltage regulator.
The mapping is as follows:

e Bytes [15..0]: 128 bits for unique identifier

e Bytes[47..16]: Atmel reserved

e Bytes [49..48]: Measured frequency (on tester) of the internal 32 kHz RC when V,,pp,5=3.3V (measurement
performed at 25°C). These 2 bytes contain the frequency in Hertz.

e Bytes [51..50]: Measured frequency (on tester) of the internal 32 kHz RC when V,,pp5,0=1.8V (measurement
performed at 25°C). These 2 bytes contain the frequency in Hertz.

e Bytes[63..52]: Atmel reserved

e Bytes[65..64]: Trimmed code of the internal regulator which allows the device to run at up to 120 MHz. The 4
LSB bits must be written in the SUPC_PWMR.ECPWRX.

e Bytes[67..66]: Trimmed code of the internal regulator which allows the device to run at up to 100 MHz. Only
the 4 LSB bits are used. They must be written in the SUPC_PWMR.ECPWRX. It is the default value after
reset.

e Bytes[67..511]: Atmel reserved.

8.3.1.6 General-Purpose Non-Volatile Memory Bits

The SAM G55 features three GPNVM bits that can be cleared or set, respectively, through the commands “Clear
GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.

Table 8-3. General-purpose Non-volatile Memory Bits
GPNVM Bit Function
0 Security bit
1 Boot Mode Selection
2 Reserved (do not use)

8.3.1.7 Boot Strategies
The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be
changed using GPNVM bits.
A general-purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.
The GPNVM bit can be cleared or set respectively through the commands “Clear GPNVM Bit” and “Set GPNVM
Bit” of the EEFC User Interface.
Setting GPNVM1 selects the boot from the Flash. Clearing it selects the boot from the ROM. Asserting ERASE
clears the GPNVM1 and thus selects the boot from the ROM by default.

24 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

8.3.1.8 Calibration Bits

The GPNVM bits are used to calibrate the POR, the voltage regulator and RC 8/16/24. These bits are factory-
configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

Table 8-4. Calibration Bit Indexes
RC Calibration Frequency EEFC_FRR Bits
SUPC.LPOWER3-0 [117-114]

8.3.1.9 Security Bit

The SAM G55 features a security bit, based on a specific general-purpose NVM bit (GPNVM bit 0). When the
security is enabled, any access to the Flash, SRAM, core registers and internal peripherals through the ICE
interface is forbidden. This ensures the confidentiality of the code programmed in the Flash.

The security bit can only be enabled with the command “Set GPNVM Bit 0" of the EEFC User Interface. Disabling
the security bit can only be done by asserting the ERASE pin to 1, and after a full Flash erase is performed. When
the security bit is deactivated, all accesses to the Flash, SRAM, core registers and internal peripherals are
permitted.

The ERASE pin integrates a permanent pull-down. As a result, it can be left unconnected during normal operation.
However, it is recommended, in harsh environments, to connect it directly to GND if the erase operation is not
used in the application.

To avoid unexpected erase at power-up, a minimum ERASE pin assertion time is required. This time is defined in
Table 39-48 “AC Flash Characteristics”.

The erase operation is not performed when the system is in Wait mode with the Flash in Deep-power-down mode.

To ensure that the erase operation is performed after power-up, the system must not reconfigure the ERASE pin
as GPIO or enter Wait mode with Flash in Deep-power-down mode before the ERASE pin assertion time has
elapsed.
The following sequence details the steps of the erase operation:

1. Assertthe ERASE pin (High).

2. Assert the NRST pin (Low).

3. Power cycle the device.

4. Maintain the ERASE pin high for at least the minimum assertion time.

Atmel SAMG55 [DATASHEET] 25

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

9. Peripherals

9.1 Peripheral Identifiers

Table 9-1 defines the peripheral identifiers of the SAM G55. A peripheral identifier is required:
e for the control of the peripheral interrupts by the Nested Vectored Interrupt Controller
e to enable/disable the peripheral clocks by means of the Peripheral Clock Enable and Disable registers
(PMC_PCERx, PMC_PCDRX) in the Power Management Controller.

The external interrupts are connected to WKUP pins (level detection managed by the SUPC) and the default
detection is in low level.

Table 9-1. Peripheral Identifiers
PMC
Instance ID Instance Name NVIC Interrupt Clock Control Instance Description
0 SUPC X - Supply Controller
1 RSTC - Reset Controller
2 RTC X - Real Time Clock
3 RTT X - Real Time Timer
4 WDT X - Watchdog Timer
5 PMC X - Power Management Controller
6 EFC X - Enhanced Flash Controller
7 USART7, SPI7, TWI7 X X USART/SPI/TWI 7
8 USARTO, SPIO, TWIO X X USART/SPI/TWI 0
9 USART1, SPI1, TWI1 X X USART/SPI/TWI 1
10 Reserved - - -
11 PIOA X X Parallel I/O Controller A
12 PIOB X X Parallel I/O Controller B
13 PDMICO X X PDMICO
14 USART2, SPI2, TWI2 X X USART/SPI/TWI 2
15 MEM2MEM X X MEM2MEM
16 12SCO0 X X 12SCO0
17 12SC1 X X 12SC1
18 PDMIC1 X X PDMIC1
19 USART3, SPI3, TWI3 X X USART/SPI/TWI 3
20 USART4, SPI4, TWI4 X X USART/SPI/TWI 4
21 USARTS5, SPI5, TWI5 X X USART/SPI/TWI 5
22 USART®6, SPI6, TWI6 X X USART/SPI/TWI 6
23 TCO X X Timer/Counter 0
24 TC1 X X Timer/Counter 1
25 TC2 X X Timer/Counter 2
26 TC3 X X Timer/Counter 3
27 TC4 X X Timer/Counter 4

26 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

Table 9-1. Peripheral Identifiers (Continued)
PMC

Instance ID Instance Name NVIC Interrupt Clock Control Instance Description
28 TC5 X X Timer/Counter 5
29 ADC X X Analog To Digital Converter
30 ARM X - FPU
31 WKUPO X - External interrupt O
32 WKUP1 X - External interrupt 1
33 WKUP2 X - External interrupt 2
34 WKUP3 X - External interrupt 3
35 WKUP4 X - External interrupt 4
36 WKUP5 X - External interrupt 5
37 WKUP6 X - External interrupt 6
38 WKUP7 X - External interrupt 7
39 WKUPS8 X - External interrupt 8
40 WKUP9 X - External interrupt 9
41 WKUP10 X - External interrupt 10
42 WKUP11 X - External interrupt 11
43 WKUP12 X - External interrupt 12
44 WKUP13 X - External interrupt 13
45 WKUP14 X - External interrupt 14
46 WKUP15 X - External interrupt 15
47 UHP X X USB OHCI
48 UDP X X USB Device FS
49 CRCCU X X CRCCU

Atmel SAMG55 [DATASHEET] 27

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

9.2 Peripheral Signal Multiplexing on I/O Lines
The SAM G55 features two PIO controllers, PIOA and PIOB, which multiplex the 1/O lines of the peripheral set.

Each line can be assigned to one of two peripheral functions: A or B. The multiplexing tables in the following
paragraphs define how the I/O lines of the peripherals A and B are multiplexed on the PIO controllers.

Note that some peripheral functions which are output only may be duplicated within both tables.

Table 9-2. PIO Lines Available Depending on Pin Count
PIO Controller 49 Leads 64 Leads
PIOA 25 32
PIOB 13 16
28 SAMGH55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

9.2.1 PIO Controller A Multiplexing

Table 9-3. Multiplexing on PIO Controller A (PIOA)

I/O Line Peripheral A Peripheral B Extra Function System Function
PAO I2SCKO TIOAO WKUPQW®W -
PA1 12SWSO0 TIOBO wWKUP1® -
PA2 TCLKO 12SDIO0 wKup2®W -
PA3 TXD3/SPI3_MOSI/TWD3 12SDO0 WKUP9®W -
PA4 RXD3/SPI3_MISO/TWCK3 I2SMCKO WKUP10W -
PA5 RXD2/SPI2_MISO/TWCK2 SPI5_NPCS1/RTS5 WKUP4®W -
PA6 TXD2/SPI2_MOSI/TWD2 PCKO - -
PA7 - - - XIN32?
PAS - ADTRG WKUP5®W XouT32?
PA9 RXDO/SPI0_MISO/TWCKO PDMIC_DAT WKUP6Y -
PA10 TXDO/SPI0_MOSI/TWDO PDMIC_CLK - -
PA11 SPI5_NPCS0/CTS5 - - -
PA12 RXD5/SPI5_MISO/TWCK5 - - -
PA13 TXD5/SPI5_MOSI/TWD5 - - -
PA14 SCK5/SPI5_SPCK - wkKup8® -
PA15 SPI2_NPCS1/RTS2 SCK2/SPI2_SPCK - -
PA16 SPI2_NPCS0/CTS2 TIOB1 WKUP7® -
PA17 12SDO0 PCK1 ADO®) -
PA18 I2SMCKO PCK2 AD1®) -
PA19 TCLK1 I2SCK1 AD2C) -
PA20 TCLK2 12SWS1 AD3C) -
PA21 TIOA2 PCK1 - DM
PA22 TIOB2 12SDI1 - DP
PA23 12SDO1 TIOAL WKUP3®W -
PA24 12SMCK1 SCK2/SPI2_SPCK wKuUP11® -
PA25 SPI0O_NPCS0/CTS0 12SDO1 - -
PA26 SPIO_NPCS1/RTS0 I2SMCK1 - -
PA27 SCK1/SPI1_SPCK RXD7/SPI7_MISO/TWCK? - -
PA28 SPI1_NPCS0/CTS1 TXD7/SPI7_MOSI/TWD7 - -
PA29 SPI1_NPCS1/RTS1 SCK7/SPI7_SPCK - -
PA30 PCK1 SPI7_NPCS0/CTS7 - -
PA31 PCK2 SPI7_NPCS1/RTS7 - -

Notes: 1. WKUPx can be used if PIO controller defines the 1/O line as "input".

2. Refer to Section 9.3 “System I/O Lines”.

3. To select this extra function, refer to Section 38.5.3 “I/O Lines”.

Atmel

SAMGS55 [DATASHEET]

29

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

9.2.2 PIO Controller B Multiplexing

Table 9-4. Multiplexing on PIO Controller B (PIOB)
I/O Line Peripheral A Peripheral B Extra Function System Function
PBO SCKO/SPI0_SPCK TXD6/SPI6_MOSI/TWD6 AD4®) -
PB1 SCKA4/SP14_SPCK RXD6/SP16_MISO/TWCK6 AD5?) -
PB2 RXD1/SPI1_MISO/TWCK1 SPI5_NPCS1/RTS5 AD6/WKUP12®) -
PB3 TXD1/SPI1_MOSI/TWD1 PCK2 AD7/WKUP13® -
PB4 - - - TDI®)
PB5 - - - TDO/ TRACESWO®)
PB6 - - - TMS/SWDIO®)
PB7 - - - TCK/SWCLK®
PB8 TXD4/SPI4_MOSI/TWD4 SPI4_NPCS0/CTS4 WKUP14®) XouT®
PB9 RXD4/SP14_MISO/TWCK4 SPl4_NPCS1/RTS4 WKUP15® XIN®
PB10 TXD4/SP14_MOSI/TWD4™ TXD6/SPI6—(1'\)A OSITWDO
PB11 RXD4/SP14_MISO/TWCK4®Y | RXD6/SPI6_MISO/TWCK6™ - -
PB12 - - - ERASE®
PB13 SCK3/SPI3_SPCK SCK6/SPI6_SPCK - -
PB14 SPI3_NPCS0/CTS3 SPI6_NPCS0/CTS6 - -
PB15 SPI3_NPCS1/RTS3 SPI6_NPCS1/RTS6 - -
Note: 1. Each TWI (TWI4,TWI6) can be routed on two different pairs of 10s. TWI1 and TWI2 share one pair of IOs (PB10 and PB11).

The configuration of the shared 10s determines which TWI is selected.
To select this extra function, refer to Section 38.5.3 “I/O Lines”.
Analog input has priority over WKUPX pin.

WKUPXx can be used if PIO controller defines the I/O line as "input".
Refer to Section 9.3 “System 1/O Lines”.

a s wnD

30 SAMG5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

9.2.2.1

TWI Multiplexing
The TWI function must first be selected through the FLEXCOM interface (OPMODE field in the FLEXCOM_MR
register).

The selection of the TWI used in PB10 and PB11 is determined by the configuration of PB10 and PB11. Three
modes are possible: Normal Mode, Alternative Mode TWI4 and Alternative Mode TWIG.

Normal Mode
e Only TWI4 used: PB09 and PB08 must be configured as PIO Peripheral A
e Only TWI6 used: PBO0 and PB0O1 must be configured as PIO Peripheral B

e Both TWI4 and TWI6 used: PB09 and PB08 must be configured as PIO Peripheral A and PB0O0 and PBO1
must be configured as P1O Peripheral B.

Alternative Mode TWI4

TWI4 is multiplexed on PB10 and PB11: PB10 and PB11 must be configured as PIO Peripheral A. PB8 and PB9
can be configured as GPIO, WKUP pin or XIN, XOUT. PB8 and PB9 cannot be used as peripherals.

Alternative Mode TWI6

TWI6 is multiplexed on PB10 and PB11: PB10 and PB11 must be configured as PIO Peripheral B. PBO and PB1
can be configured as GPIO, Analog Input. PBO and PB1 cannot be used as peripherals.
Example of Alternative Mode TWI4:
e PB10is driven by TWD4 signal if the PB10 is configured as peripheral (PIO_PSR[10]=1 and
PIO_ABCDSR1[10]=PIO_ABCDSR2[10]=0).

e PBI11 is driven by TWCK4 signal if the PB11 is configured as peripheral (PIO_PSR[11]=1 and
PIO_ABCDSR1[11]=PIO_ABCDSR2[11]=0).

Table 9-5. TWI Multiplexing
. PIO Configuration

Required g

Configuration PB10 PB11 PBO PB1 PB8 PB9 PB10 | PB11

Normal Mode Enable Enable
TWI1 and/or TWD6 TWCK6 TWD4 TWCK4 GPIO GPIO
TWI2 Used PIO_PER[10] | PIO_PER[11]
;] GPIO or GPIO or
Alternative Config PB10 Config PB11 : _ TWCK
as as TWD6 TWCKG6 PI1O_periphB or PI1O_periphB or TWD4
Mode TWI1 . . 4
Peripheral A Peripheral A WKUP pin @ WKUP pin @
GPIO GPIO or
or ;
. Config PB10 | ConfigPB10 | pi5 periphg | | O—PEPhB
Alternative as as —Perip or TWD4 TWCK4 Twpe | WK
Mode TWI2 . . or @ 6
Peripheral B Peripheral B R AD Input
AD Input®
Note: 1. Configuration of PBx can be done after the configuration of PB10 and PB11.
SAMG55 [DATASHEET] 31

Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Figure 9-1. TWI Master PIO Muxing Selection

Mux Selection
(PIO_ABCDSR1/2)

|

O PB8
TWIL
* PB9
A N
8 PB10
K
R PB11
/
. PBO
TWI2 1
PB1

9.3 System I/O Lines

Table 9-6 lists the SAMG55 system 1/O lines shared with PIO lines. These pins are software configurable as
general purpose 1/O or system pins. At startup, the default function of these pins is always used.

Table 9-6. System I/O Configuration Pin List
CCFG_SYSIO | Default Function Constraints
Bit No. after Reset Other Function for Normal Start Configuration
12 ERASE PB12 Low Level at startup®
11 DP PA22 —
10 DM PA2L - In Matrix User Interface Registers
7 TCK/SWCLK PB7 - (Refer to the System I/O Configuration Register in
6 TMS/SWDIO PB6 _ Section 15. “Bus Matrix (MATRIX)".)
5 TDO/TRACESWO PB5 -
4 TDI PB4 —
- PA7 XIN32 -
(2
- PA8 X0OUT32 -
- PB9 XIN -
(3)
- PB8 XOuT -

Notes: 1. If PB12is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the
user application sets PB12 into PIO mode.

32 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

2. Refer to Section 25.4.2 “Slow Clock Generator”.
3. Referto .Section 17.5.3 “3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator”

Atmel SAMG55 [DATASHEET] 33

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

10. Event System

The events generated by peripherals are designed to be directly routed to peripherals managing/using these
events without processor intervention. Peripherals receiving events contain logic used to select the required
peripheral.

10.1 Embedded Characteristics

e Timers, IO, peripherals generate event triggers which are directly routed to event managers such as ADC, to
start measurement/conversion without processor intervention.

e USART, SPI, TWI, ADC also generate event triggers directly connected to Peripheral DMA Controller (PDC)
for data transfer without processor intervention.

e PMC security event (clock failure detection) can be programmed to switch the MCK on a reliable main RC
internal clock without processor intervention.

10.2 Real-Time Event Mapping

Table 10-1. Real-time Event Mapping List

Function Application Description Event Source Event Destination

Automatic switch to reliable main RC
Safety General-purpose oscillator in case of main crystal clock
failure

Power Management

Controller (PMC) PMC

Immediate GPBR clear
Security General-purpose (asynchronous) on tamper detection P10: WKUPO0/1 GPBR
through WKUPO0/1 10 pins @

PIO: ADTRG ADC
TC: TIOAO ADC
TC: TIOAL ADC
Trigger source selection in ADC®) TC: TIOA2 ADC
Measurement |~ General-purpose RTC: RTCOUTO) ADC
trigger -
RTT: 16-bit p[gscaler ADC
output
Last Channel Spemfu(:ﬁ;vleasurement RTC: RTCOUTL @ ADC
Trigger
SleepWalking Trigger source selection in ADC © RTT: RTTEVENT(ADC
Peripheral trigger event generation to FLEXCOM
Direct Memory General-purpose Fzransl‘er ?:igta tolfrorrg]] system (USART/TWI/SPI) PDC
Access Purp memory® y 0/1/2/3/4/5/6/7, ADC,TC,

12SC0/1, PDMICO/1

Notes: 1. Referto “Main Clock Failure Detection” in section “Power Management Controller (PMC)”

2. Refer to “Low-power Tamper Detection and Anti-Tampering” in section “Supply Controller (SUPC)” and “General Purpose
Backup Register x” in section “General Purpose Backup Register (GPBR)”

Refer to “ADC Mode Register (ADC_MR)” in section “Analog-to-Digital Converter (ADC)".

Refer to “Waveform Generation” in section “Real-time clock (RTC)”

Refer to “Block Diagram” in section “Real-time Timer (RTT)”

Refer to “Last Channel Specific Measurement Trigger” in section “Analog-to-Digital Converter (ADC)

Refer to “Block Diagram” and “Real-time Timer Modulo Selection Register (RTT_MODR)” in section “Real-time Timer
(RTT)”
8. Refer to “Peripheral DMA Controller (PDC)”.

No oMo

34 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

11. Debug and Test Features

11.1 Description

The SAM G55 features a number of complementary debug and test capabilities. The Serial Wire/JTAG Debug Port
(SWJ-DP) combining a Serial Wire Debug Port (SW-DP) and JTAG Debug Port (JTAG-DP) is used for standard
debugging functions, such as downloading code and single-stepping through programs. It also embeds a serial
wire trace.

11.2 Embedded Characteristics
e Debug access to all memories and registers in the system, including Cortex-M4 register bank when the core
is running, halted, or held in reset.
Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access.
Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches.
Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and system profiling.
Instrumentation Trace Macrocell (ITM) for support of printf style debugging.
IEEE1149.1 JTAG Boundary-scan on all digital pins.

11.3 Debug and Test Block Diagram

Figure 11-1. Debug and Test Block Diagram

™S

L) 1

TCK/SWCLK

[]| o

[l

Boundary SWJ-DP ¢ JTAGSEL

TAP I_L

TDO/TRACESWO

=
H

POR

Reset
and

Test I:l TST

Atmel SAMG55 [DATASHEET] 35

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

11.4 Application Examples

11.4.1 Debug Environment

Figure 11-2 shows a complete debug environment example. The SWJ-DP interface is used for standard

debugging functions, such as downloading code and single-stepping through the program, and viewing core and
peripheral registers.

Figure 11-2. Application Debug Environment Example

/
Host Debugger
PC

SWJ-DP
Emulator/Probe

SWJ-DP
Connector

SAM G55

SAM G55-based Application Board

11.4.2 Test Environment

Figure 11-3 shows a test environment example (JTAG boundary scan). Test vectors are sent and interpreted by

the tester. In this example, the “board in test” is designed using a number of JTAG-compliant devices. These
devices can be connected to form a single scan chain.

36 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15 A t I I IeL

Figure 11-3. Application Test Environment Example

Test Adaptor
Tester
JTAG
Probe
JTAG . :
Connector || Chip np == Chip 2
I
SAM G55-based Application Board In Test
11.5 Debug and Test Pin Description
Table 11-1. Debug and Test Signal List
Signal Name Function Type Active Level
Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input
SWD/ITAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
Test Data Out/Trace
(€
TDO/TRACESWO Asynchronous Data Out Output
TMS/SWDIO Test Mode Select/Serial Wire Input
Input/Output
JTAGSEL JTAG Selection Input High

Note: 1. TDO pinis set in input mode when the Cortex-M4 Core is not in debug mode. Thus the internal pull-up
corresponding to this PIO line must be enabled to avoid current consumption due to floating input.

Atmel SAMG55 [DATASHEET] 37

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

11.6 Functional Description

11.6.1 Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low level during power-
up, the device is in normal operating mode. When at high level, the device is in test mode. The TST pin integrates
a permanent pull-down resistor of about 15 kQ, so that it can be left unconnected for normal operation. Note that
when setting the TST pin to low or high level at power up, it must remain in the same state during the duration of
the whole operation.

11.6.2 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset
signal to the external components or asserted low externally to reset the microcontroller. It will reset the Core and
the peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length
of the reset pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a
permanent pull-up resistor to VDDIO of about 100 kQ. By default, the NRST pin is configured as an input.

11.6.3 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read
as logic level 1). The ERASE pin and the ROM code ensure an in-situ reprogrammability of the Flash content
without the use of a debug tool. When the security bit is activated, the ERASE pin provides the capability to
reprogram the Flash content. It integrates a pull-down resistor of about 100 kQ to GND, so that it can be left
unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. To avoid unexpected erase at power-up, a
minimum ERASE pin assertion time is required. This time is defined in Table 39-48, “AC Flash Characteristics,” on
page 1093.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured
as a P10 pin. If the ERASE pin is used as a standard /O, start-up level of this pin must be low to prevent unwanted
erasing. Also, if the ERASE pin is used as a standard 1/O output, asserting the pin to low does not erase the Flash.
For details, please refer to Section 9.2 “Peripheral Signal Multiplexing on /O Lines”.

11.6.4 Debug Architecture
Figure 11-4 shows the Debug Architecture used in the SAM G55. The Cortex-M4 embeds four functional units for
debug:
e SWJ-DP (Serial Wire/JTAG Debug Port).
e FPB (Flash Patch Breakpoint.
e DWT (Data Watchpoint and Trace).
e |TM (Instrumentation Trace Macrocell).
e TPIU (Trace Port Interface Unit).
The debug architecture information that follows is mainly dedicated to developers of SWJ-DP emulators/probes

and debugging tool vendors for Cortex M4-based microcontrollers. For further details on SWJ-DP see the Cortex
M4 technical reference manual.

38 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Figure 11-4. Debug Architecture

DWT

4 watchpoints

FPB
PC sampler SWJ-DP

6 breakpoints

data address sampler
SWD/JTAG
data sampler ™
software trace SWO trace
32 channels
interrupt trace TPIU

time stamping

CPU statistics

11.6.5 Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M4 embeds a SWJ-DP debug port which is the standard CoreSight™ debug port. It combines Serial
Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG Debug Port (JTAG-DP), 5 pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial Wire Debug Port, it
must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables JTAG-DP and
enables SW-DP.

When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace. The asynchronous TRACE
output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not
JTAG-DP.

Table 11-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO T™MS SWDIO
TCK/SWCLK TCK SWCLK

TDI TDI -
TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly between SWJ-DP
and JTAG boundary scan operations. A chip reset must be performed after JTAGSEL is changed.

11.6.5.1 SW-DP and JTAG-DP Selection Mechanism
Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-DP is selected by
default after reset.
e Switch from JTAG-DP to SW-DP. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (0x79E7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1

Atmel SAMG55 [DATASHEET] 39

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e Switch from SWD to JTAG. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (Ox3CE7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1

11.6.6 FPB (Flash Patch Breakpoint)

The FPB:
e Implements hardware breakpoints.
e Patches code and data from code space to system space.

The FPB unit contains:

e Two literal comparators for matching against literal loads from code space, and remapping to a
corresponding area in system space.

e Six instruction comparators for matching against instruction fetches from code space and remapping to a
corresponding area in system space.

e Alternatively, comparators can also be configured to generate a breakpoint instruction to the processor core
on a match.

11.6.7 DWT (Data Watchpoint and Trace)

The DWT contains four comparators which can be configured to generate the following:
e PC sampling packets at set intervals.
e PC or data watchpoint packets.
e Watchpoint event to halt core.

The DWT contains counters for the items that follow:
e Clock cycle (CYCCNT).
Folded instructions.
Load Store Unit (LSU) operations.
Sleep cycles.
CPI (all instruction cycles except for the first cycle).
Interrupt overhead.

11.6.8 ITM (Instrumentation Trace Macrocell)

The ITM is an application driven trace source that supports printf style debugging to trace Operating System (OS)
and application events, and emits diagnostic system information. The ITM emits trace information as packets
which can be generated by three different sources with several priority levels:

e Software trace: Software can write directly to ITM stimulus registers. This can be done thanks to the “printf”
function. For more information, refer to Section 11.6.8.1 “How to Configure the ITM”.

e Hardware trace: The ITM emits packets generated by the DWT.

e Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate
the timestamp.

11.6.8.1 How to Configure the ITM
The following example describes how to output trace data in asynchronous trace mode.
e Configure the TPIU for asynchronous trace mode (refer to Section 11.6.8.3 “How to Configure the TPIU").

e Enable the write accesses into the ITM registers by writing “OXC5ACCES5” into the Lock Access Register
(address: 0xEOOOOFBO).

e Write 0x00010015 into the Trace Control Register:

40 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

— Enable ITM.
— Enable synchronization packets.
— Enable SWO behavior.
— Fixthe ATB ID to 1.
e Write Ox1 into the Trace Enable Register:
— Enable the stimulus port 0.
e Write Ox1 into the Trace Privilege Register:

— Stimulus port 0 only accessed in privileged mode (clearing a bit in this register will result in the
corresponding stimulus port being accessible in user mode).

e Write into the Stimulus Port 0 Register: TPIU (Trace Port Interface Unit).
— The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macrocell (ITM).
— The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

11.6.8.2 Asynchronous Mode

The TPIU is configured in asynchronous mode, trace data are output using the single TRACESWO pin. The
TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, asynchronous
trace mode is only available when the serial wire debug mode is selected since TDO signal is used in JTAG debug
mode.
Two encoding formats are available for the single pin output:

e Manchester encoded stream. This is the reset value.

e NRZ-based UART byte structure.

11.6.8.3 How to Configure the TPIU

This example only concerns the asynchronous trace mode.

e Setthe TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to enable the use of
trace and debug blocks.

e Write Ox2 into the Selected Pin Protocol Register.
— Select the Serial Wire Output — NRZ.
e Write 0x100 into the Formatter and Flush Control Register.

e Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the
asynchronous output (this can be done automatically by the debugging tool).

Atmel SAMGS5S5 [DATASHEET] 41

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

11.6.9 IEEE 1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST is tied to low, while JTAG SEL is high during power-up
and must be kept in this state during the whole boundary scan operation. The SAMPLE, EXTEST and BYPASS
functions are implemented. In SWD/JTAG debug mode, the ARM processor responds with a non-JTAG chip ID
that identifies the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset
must be performed after JTAGSEL is changed. A Boundary-scan Descriptor Language (BSDL) file is provided on
Atmel’s web site to set up the test.

11.6.9.1 JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which corresponds to active pins and associated
control signals.

Each SAM G55 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that
can be forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit
selects the direction of the pad.

For more information, please refer to BSDL files available for the SAM G55.

42 SAMGS5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

11.6.10 ID Code Register

Access: Read-only

31 30 29 28 27 26 25 24
| VERSION PART NUMBER
23 22 21 20 19 18 17 16
| PART NUMBER
15 14 13 12 11 10 9 8
| PART NUMBER MANUFACTURER IDENTITY
7 6 5 4 3 2 1 0
| MANUFACTURER IDENTITY 1
* VERSIONJ[31:28]: Product Version Number
Set to 0x0.
* PART NUMBER[27:12]: Product Part Number
Chip Name Chip ID
SAMG55G19 0X2447_0AEO
SAMG55J19 0X2457_0AEO

« MANUFACTURER IDENTITY[11:1]
Set to OxO1F.

» Bit[0] Required by IEEE Std. 1149.1.

Set to Ox1.
Chip Name JTAG ID Code
SAM G55 0x05B3_EO3F

Atmel

SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

43

12. Chip Identifier (CHIPID)

12.1 Description

Chip Identifier (CHIPID) registers are used to recognize the device and its revision. These registers provide the
sizes and types of the on-chip memories, as well as the set of embedded peripherals.

Two CHIPID registers are embedded: Chip ID Register (CHIPID_CIDR) and Chip ID Extension Register
(CHIPID_EXID). Both registers contain a hard-wired value that is read-only.
The CHIPID_CIDR register contains the following fields:
e VERSION: Identifies the revision of the silicon
EPROC: Indicates the embedded ARM processor
NVPTYP and NVPSIZ: Identify the type of embedded non-volatile memory and the size
SRAMSIZ: Indicates the size of the embedded SRAM
ARCH: Identifies the set of embedded peripherals
e EXT: Shows the use of the extension identifier register

The CHIPID_EXID register is device-dependent and reads 0 if CHIPID_CIDR.EXT = 0.

12.2 Embedded Characteristics
e Chip ID Registers

— Identification of the Device Revision, Sizes of the Embedded Memories, Set of Peripherals,
Embedded Processor

Table 12-1. SAM G55 Chip ID Registers

Chip Name CHIPID_CIDR CHIPID_EXID
SAM G55G19 0x2447_0AEQO 0x0
SAM G55J19 0x2457_0AEQ 0x0

12.3 Chip Identifier (CHIPID) User Interface

Table 12-2. Register Mapping

Offset Register Name Access Reset
0x0 Chip ID Register CHIPID_CIDR Read-only -
Ox4 Chip ID Extension Register CHIPID_EXID Read-only -

44 SAMGSS5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

12.3.1 Chip ID Register

Name: CHIPID_CIDR
Address: 0x400E0740
Access: Read-only

31 30 29 28 27 26 25 24
| EXT | NVPTYP ARCH

23 22 21 20 19 18 17 16
| ARCH SRAMSIZ

15 14 13 12 11 10 9 8
| NVPSIZ2 NVPSIZ

7 6 5 4 3 2 1 0
| EPROC VERSION

* VERSION: Version of the Device
Current version of the device.

« EPROC: Embedded Processor

Value Name Description
0 SAM x7 Cortex-M7
1 ARMO946ES ARM946ES
2 ARM7TDMI ARM7TDMI
3 CM3 Cortex-M3
4 ARM920T ARM920T
5 ARM926EJS ARM926EJS
6 CA5 Cortex-A5
7 Cm4 Cortex-M4

» NVPSIZ: Nonvolatile Program Memory Size

Value Name Description
0 NONE None
1 8K 8 Kbytes
2 16K 16 Kbytes
3 32K 32 Kbytes
4 - Reserved
5 64K 64 Kbytes
6 — Reserved
7 128K 128 Kbytes
8 160K 160 Kbytes
9 256K 256 Kbytes
10 512K 512 Kbytes

Atmel

SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

45

Value Name Description
11 - Reserved
12 1024K 1024 Kbytes
13 - Reserved
14 2048K 2048 Kbytes
15 - Reserved

» NVPSIZ2: Second Nonvolatile Program Memory Size

Value Name Description
0 NONE None
1 8K 8 Kbytes
2 16K 16 Kbytes
3 32K 32 Kbytes
4 - Reserved
5 64K 64 Kbytes
6 — Reserved
7 128K 128 Kbytes
8 - Reserved
9 256K 256 Kbytes
10 512K 512 Kbytes
11 - Reserved
12 1024K 1024 Kbytes
13 - Reserved
14 2048K 2048 Kbytes
15 - Reserved

» SRAMSIZ: Internal SRAM Size

Value Name Description
0 48K 48 Kbytes
1 192K 192 Kbytes
2 384K 384 Kbytes
3 6K 6 Kbytes
4 24K 24 Kbytes
5 4K 4 Kbytes
6 80K 80 Kbytes
7 160K 160 Kbytes
8 8K 8 Kbytes
9 16K 16 Kbytes
10 32K 32 Kbytes
1 64K 64 Kbytes

46 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Value Name Description
12 128K 128 Kbytes
13 256K 256 Kbytes
14 96K 96 Kbytes
15 512K 512 Kbytes

* ARCH: Architecture Identifier

Value Name Description
0x44 SAM G55 SAM G55 (49-lead version)
0x45 SAM G55 SAM G55 (64-lead version)

* NVPTYP: Nonvolatile Program Memory Type

Value Name Description
0 ROM ROM
1 ROMLESS ROMless or on-chip Flash
2 FLASH Embedded Flash Memory
ROM and Embedded Flash Memory
3 ROM_FLASH ® NVPSIZ is ROM size
® NVPSIZ2 is Flash size
4 SRAM SRAM emulating ROM

» EXT: Extension Flag
0: Chip ID has a single register definition without extension.

1: An extended Chip ID exists.

Atmel SAMGS5S5 [DATASHEET] 47

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

12.3.2 Chip ID Extension Register

Name: CHIPID_EXID

Address: 0x400E0744

Access: Read-only
31 30 29 28 27 26 25 24

| EXID |
23 22 21 20 19 18 17 16

| EXID |
15 14 13 12 11 10 9 8

| EXID |
7 6 5 4 3 2 1 0

| EXID |

« EXID: Chip ID Extension
This field is cleared if CHIPID_CIDR.EXT = 0.

48 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13. ARM Cortex-M4 Processor

13.1 Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers
significant benefits to developers, including outstanding processing performance combined with fast interrupt
handling, enhanced system debug with extensive breakpoint and trace capabilities, efficient processor core,
system and memories, ultra-low power consumption with integrated sleep modes, and platform security
robustness, with integrated memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard
architecture, making it ideal for demanding embedded applications. The processor delivers exceptional power
efficiency through an efficient instruction set and extensively optimized design, providing high-end processing
hardware including IEEE754-compliant single-precision floating-point computation, a range of single-cycle and
SIMD multiplication and multiply-with-accumulate capabilities, saturating arithmetic and dedicated hardware
division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system
components that reduce processor area while significantly improving interrupt handling and system debug
capabilities. The Cortex-M4 processor implements a version of the Thumb instruction set based on Thumb-2
technology, ensuring high code density and reduced program memory requirements. The Cortex-M4 instruction
set provides the exceptional performance expected of a modern 32-bit architecture, with the high code density of
8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt
performance. The NVIC includes a non-maskable interrupt (NMI), and provides up to 256 interrupt priority levels.
The tight integration of the processor core and NVIC provides fast execution of interrupt service routines (ISRs),
dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the
ability to suspend load-multiple and store-multiple operations. Interrupt handlers do not require wrapping in
assembler code, removing any code overhead from the ISRs. A tail-chain optimization also significantly reduces
the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

13.1.1 System Level Interface

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables
faster peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling
applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task
basis. Such requirements are becoming critical in many embedded applications such as automotive.

13.1.2 Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of
the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is
ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints
and a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial
Wire Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information
through a single pin.

Atmel SAMGS5S5 [DATASHEET] 49

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

The Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators that debuggers
can use. The comparators in the FPB also provide remap functions of up to eight words in the program code in the
CODE memory region. This enables applications stored on a non-erasable, ROM-based microcontroller to be
patched if a small programmable memory, for example flash, is available in the device. During initialization, the
application in ROM detects, from the programmable memory, whether a patch is required. If a patch is required,
the application programs the FPB to remap a number of addresses. When those addresses are accessed, the
accesses are redirected to a remap table specified in the FPB configuration, which means the program in the non-
modifiable ROM can be patched.

13.2 Embedded Characteristics

Tight integration of system peripherals reduces area and development costs
Thumb instruction set combines high code density with 32-bit performance
IEEE754-compliant single-precision FPU

Code-patch ability for ROM system updates

Power control optimization of system components

Integrated sleep modes for low power consumption

Fast code execution permits slower processor clock or increases sleep mode time
Hardware division and fast digital-signal-processing oriented multiply accumulate
Saturating arithmetic for signal processing

Deterministic, high-performance interrupt handling for time-critical applications
Memory Protection Unit (MPU) for safety-critical applications

Extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing,
and code profiling.

13.3 Block Diagram

Figure 13-1. Typical Cortex-M4F Implementation

Cortex-M4F
Processor FPU
NVIC (&P
Processor
Core
Debug Memor Serial
44— Access ory: Wire ——P
Port Protection Unit Viewer
Flash Data
Patch Watchpoints|
Bus Matrix
Code SRAM and
Interface Peripheral Interface
A A
v v
50 SAMG55 [DATASHEET]
Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15 /I t m eL

13.4 Cortex-M4 Models

13.4.1 Programmers Model

This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions, it
contains information about the processor modes and privilege levels for software execution and stacks.

13.4.1.1 Processor Modes and Privilege Levels for Software Execution

The processor modes are:

e Thread mode
Used to execute application software. The processor enters the Thread mode when it comes out of reset.

e Handler mode
Used to handle exceptions. The processor returns to the Thread mode when it has finished exception
processing.
The privilege levels for software execution are:
e Unprivileged
The software:
— Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
— Cannot access the System Timer, NVIC, or System Control Block
— Might have a restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.
e Privileged
The software can use all the instructions and has access to all resources. Privileged software executes at
the privileged level.

In Thread mode, the Control Register controls whether the software execution is privileged or unprivileged, see
“Control Register”. In Handler mode, software execution is always privileged.

Only privileged software can write to the Control Register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to
privileged software.

13.4.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked
item in memory When the processor pushes a new item onto the stack, it decrements the stack pointer and then
writes the item to the new memory location. The processor implements two stacks, the main stack and the process
stack, with a pointer for each held in independent registers, see “Stack Pointer”.

In Thread mode, the Control Register controls whether the processor uses the main stack or the process stack,
see “Control Register”.

In Handler mode, the processor always uses the main stack.
The options for processor operations are:

Table 13-1. Summary of Processor Mode, Execution Privilege Level, and Stack Use Options

Processor Privilege Level for

Mode Used to Execute Software Execution Stack Used

Thread Applications Privileged or unprivileged™ | Main stack or process stack"
Handler Exception handlers Always privileged Main stack

Note: 1. See “Control Register”.

Atmel SAMG55 [DATASHEET] 51

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.1.3 Core Registers
Figure 13-2. Processor Core Registers
e N
RO
R1
R2
R3
Low registers
R4
R5
R6 General-purpose registers
R7
>_
R8
R9
High registers R10
R11
R12
i N— —
Stack Pointer SP (R13) psP* || wmspP’ *Banked version of SP
Link Register LR (R14)
Program Counter PC (R15)
PSR Program status register
PRIMASK
FAULTMASK Exception mask registers Special registers
BASEPRI
CONTROL CONTROL register
Table 13-2. Core Processor Registers
Register Name Access® Required Privilege® Reset
General-purpose registers RO-R12 Read/Write Either Unknown
Stack Pointer MSP Read/Write Privileged See description
Stack Pointer PSP Read/Write Either Unknown
Link Register LR Read/Write Either OXFFFFFFFF
Program Counter PC Read/Write Either See description
Program Status Register PSR Read/Write Privileged 0x01000000
Application Program Status Register APSR Read/Write Either 0x00000000
Interrupt Program Status Register IPSR Read-only Privileged 0x00000000
Execution Program Status Register EPSR Read-only Privileged 0x01000000
Priority Mask Register PRIMASK Read/Write Privileged 0x00000000
Fault Mask Register FAULTMASK Read/Write Privileged 0x00000000
Base Priority Mask Register BASEPRI Read/Write Privileged 0x00000000
Control Register CONTROL Read/Write Privileged 0x00000000

Notes: 1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.

2. An entry of Either means privileged and unprivileged software can access the register.

52 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

13.4.1.4 General-purpose Registers
RO0-R12 are 32-bit general-purpose registers for data operations.

13.4.1.5 Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the Control Register indicates the stack pointer to
use:

e 0= Main Stack Pointer (MSP). This is the reset value.
e 1= Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

13.4.1.6 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and
exceptions. On reset, the processor loads the LR value OXFFFFFFFF.

13.4.1.7 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the
EPSR T-bit at reset and must be 1.

Atmel SAMG55 [DATASHEET] 53

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.1.8 Program Status Register

Name: PSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| N | Z | C \Y | Q | ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICIIT - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The Program Status Register (PSR) combines:
* Application Program Status Register (APSR)
* Interrupt Program Status Register (IPSR)
» Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR.

The PSR accesses these registers individually or as a combination of any two or all three registers, using the register
name as an argument to the MSR or MRS instructions. For example:

* Read of all the registers using PSR with the MRS instruction
» Write to the APSR N, Z, C, V and Q bits using APSR_nzcvg with the MSR instruction.
The PSR combinations and attributes are:

Name Access Combination

PSR Read/Write™® APSR, EPSR, and IPSR
IEPSR Read-only EPSR and IPSR

IAPSR Read/Write™ APSR and IPSR
EAPSR Read/Write®® APSR and EPSR

Notes: 1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

54 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.1.9 Application Program Status Register

Name: APSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

I N I z [¢c v [| - |
23 22 21 20 19 18 17 16

| - | GE[3:0] |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The APSR contains the current state of the condition flags from previous instruction executions.

* N: Negative Flag
0: Operation result was positive, zero, greater than, or equal
1: Operation result was negative or less than.

e Z: Zero Flag
0: Operation result was not zero
1: Operation result was zero.

e C: Carry or Borrow Flag

Carry or borrow flag:

0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

* V: Overflow Flag
0: Operation did not result in an overflow
1: Operation resulted in an overflow.

¢ Q: DSP Overflow and Saturation Flag

Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

* GE[19:16]: Greater Than or Equal Flags
See “SEL” for more information.

Atmel SAMG55 [DATASHEET] 55

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.1.10 Interrupt Program Status Register

Name: IPSR
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

* ISR_NUMBER: Number of the Current Exception
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQO

61 = IRQ49

See “Exception Types” for more information.

56 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| - ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICINT - |
7 6 5 4 3 2 1 0

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interrupt-
ible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to
write the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR
value in the stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return”.

* ICI: Interruptible-continuable Instruction

When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, or VPOP instruction,
the processor:

— Stops the load multiple or store multiple instruction operation temporarily

— Stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:

— Returns to the register pointed to by bits[15:12]

— Resumes the execution of the multiple load or store instruction.
When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

e |T: If-Then Instruction
Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional.
The conditions for the instructions are either all the same, or some can be the inverse of others. See “IT” for more
information.

e T. Thumb State

The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to O:
— Instructions BLX, BX and POP{PC}
— Restoration from the stacked xPSR value on an exception return
— Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is O results in a fault or lockup. See “Lockup” for more information.

Atmel SAMG55 [DATASHEET] 57

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.1.12 Exception Mask Registers
The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they
might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the
value of PRIMASK or FAULTMASK. See “MRS”, “MSR”, and “CPS” for more information.

58 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.1.13 Priority Mask Register

Name: PRIMASK
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - PRIMASK |

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

¢ PRIMASK
0: No effect
1: Prevents the activation of all exceptions with a configurable priority.

Atmel SAMG55 [DATASHEET] 59

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.1.14 Fault Mask Register

Name: FAULTMASK
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FAULTMASK |

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).

*+ FAULTMASK

0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

60 SAMG5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.1.15 Base Priority Mask Register

Name: BASEPRI
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| BASEPRI |

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it
prevents the activation of all exceptions with same or lower priority level as the BASEPRI value.

* BASEPRI

Priority mask bits:

0x0000: No effect

Nonzero: Defines the base priority for exception processing

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this
field, bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that higher
priority field values correspond to lower exception priorities.

Atmel SAMG55 [DATASHEET] 61

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.1.16 Control Register

Name: CONTROL
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FPCA | SPSEL | nPRIV |

The Control Register controls the stack used and the privilege level for software execution when the processor is in Thread
mode and indicates whether the FPU state is active.

* FPCA: Floating-point Context Active

Indicates whether the floating-point context is currently active:

0: No floating-point context active.

1: Floating-point context active.

The Cortex-M4 uses this bit to determine whether to preserve the floating-point state when processing an exception.

» SPSEL: Active Stack Pointer
Defines the current stack:

0: MSP is the current stack pointer.
1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception
return.

e nPRIV: Thread Mode Privilege Level
Defines the Thread mode privilege level:
0: Privileged.

1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the Control
Register when in Handler mode. The exception entry and return mechanisms update the Control Register based on the
EXC_RETURN value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and
exception handlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:
» Use the MSR instruction to set the Active stack pointer bit to 1, see “MSR”, or
* Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 13-10.

62 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction. This ensures
that instructions after the ISB execute using the new stack pointer. See “ISB”.

13.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software
control. The processor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry” and
“Exception Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more
information.

13.4.1.18 Data Types

The processor supports the following data types:
e 32-bit words
e 16-bit halfwords
e 8-bit bytes
e The processor manages all data memory accesses as little-endian. Instruction memory and Private

Peripheral Bus (PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for
more information.

13.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:
e A common way to:
— Access peripheral registers
— Define exception vectors
e The names of:
— The registers of the core peripherals
— The core exception vectors
e A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of
CMSIS-compliant software components from various middleware vendors. Software vendors can expand the
CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the architectural
short names that might be used in other documents.

The following sections give more information about the CMSIS:
e Section 13.5.3 "Power Management Programming Hints”
e Section 13.6.2 "CMSIS Functions”

e Section 13.8.2.1 "NVIC Programming Hints”.

Atmel SAMG55 [DATASHEET] 63

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding
features. The processor has a fixed memory map that provides up to 4 GB of addressable memory.

Figure 13-3.

Memory Map

OX43FFFFFF

0x42000000
OX400FFFFF

0x40000000

Ox23FFFFFF

0x22000000

0x200FFFFF
0x20000000

32 MB Bit-band alias

1 MB Bit-band region

32 MB Bit-band alias

| 1 MB Bit-band region

OXFFFFFFFF
Vendor-specific 511 MB
memory
0xE0100000
i i OXEOOFFFFF
Prlvatebpuinpheral 1.0 MB
0xE000 0000
Ox DFFRFFFF
External device 1.0 GB
0xA0000000
OX9FFFFFFF
External RAM 1.0 GB
0x60000000
OX5FFFFFFF
Peripheral 0.5GB
0x40000000
Ox3FFFFFFF
SRAM 0.5GB
0x20000000
Ox1FFFFFFF
Code 0.5GB
0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit
data, see “Bit-banding”.

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product,
refer to section Memories.

64 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

13.4.2.1 Memory Regions, Types and Attributes
The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

Memory Types
e Normal
The processor can re-order transactions for efficiency, or perform speculative reads.
e Device
The processor preserves transaction order relative to other transactions to Device or Strongly-ordered
memory.

e Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can
buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes

e Shareable
For a shareable memory region, the memory system provides data synchronization between bus masters in
a system with multiple bus masters, for example, a processor with a DMA controller.
Strongly-ordered memory is always shareable.
If multiple bus masters can access a non-shareable memory region, the software must ensure data
coherency between the bus masters.

e Execute Never (XN)
Means the processor prevents instruction accesses. A fault exception is generated only on execution of an
instruction executed from an XN region.

13.4.2.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not
guarantee that the order in which the accesses complete matches the program order of the instructions, providing
this does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on
two memory accesses completing in program order, the software must insert a memory barrier instruction between
the memory access instructions, see “Software Ordering of Memory Accesses”.

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered
memory. For two memory access instructions Al and A2, if A1 occurs before A2 in program order, the ordering of
the memory accesses is described below.

Atmel SAMG55 [DATASHEET] 65

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Table 13-3. Ordering of the Memory Accesses Caused by Two Instructions

A2 Device Access
Strongly-

Normal Non- ordered
Al Access shareable Shareable Access
Normal Access - - — —
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <

Where:
- Means that the memory system does not guarantee the ordering of the accesses.

< Means that accesses are observed in program order, that is, Al is always observed
before A2.

13.4.2.3 Behavior of Memory Accesses

The following table describes the behavior of accesses to each region in the memory map.

Table 13-4. Memory Access Behavior

Memory
Address Range Memory Region Type XN | Description
OX00000000—OX1EEFEEFE | Code Normal® B Executable region for program code. Data can also be

put here.

Executable region for data. Code can also be put here.
0x20000000—-0x3FFFFFFF | SRAM Normal ® — | This region includes bit band and bit band alias areas,
see Table 13-6.

This region includes bit band and bit band alias areas,

0x40000000—-0x5FFFFFFF | Peripheral Device® | XN see Table 13.6.

0x60000000-0x9FFFFFFF | External RAM Normal ™ - Executable region for data

0xA0000000-0xDFFFFFFF | External device Device™ XN | External Device memory

OXEO000000—OXEQOFFFFE | Private Peripheral Bus f:g;r;gg’[l) XN IgilstrﬁggfgLEC'”des the NVIC, system timer, and system
OXE0100000-0XFFFFFFFF | Reserved Device®™ | XN | Reserved

Note: 1. See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs
always use the Code region. This is because the processor has separate buses that enable instruction fetches and
data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see
“Memory Protection Unit (MPU)”.

Additional Memory Access Constraints For Caches and Shared Memory

When a system includes caches or shared memory, some memory regions have additional access constraints,
and some regions are subdivided, as Table 13-5 shows.

66 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Table 13-5. Memory Region Shareability and Cache Policies
Address Range Memory Region Memory Type Shareability Cache Policy
0x00000000-0x1FFFFFFF Code Normal®) - wT®
0x20000000-0x3FFFFFFF SRAM Normal®) - WBWA®
0x40000000—-0x5FFFFFFF Peripheral Device® - -
0x60000000-0x7FFFFFFF WBWA®
External RAM Normal® -

0x80000000-0x9FFFFFFF o
0xA0000000—0XBFFFFFFF Shareable™

Device™ ~
0xC0000000—-0XxDFFFFFFF

External device
Non-shareable)

Private Peripheral

Shareable™® -
Bus

0XE0000000—0XEQOFFFFF Strongly-ordered®

Vendor-specific

) Device™® - -
device

OXE0100000—~0XFFFFFFFF

Notes: 1. See “Memory Regions, Types and Attributes” for more information.
2. WT = Write through, no write allocate. WBWA = Write back, write allocate. See the “Glossary” for more information.
Instruction Prefetch and Branch Prediction

The Cortex-M4 processor:
e Prefetches instructions ahead of execution
e Speculatively prefetches from branch target addresses.

13.4.2.4 Software Ordering of Memory Accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:
e The processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.
e The processor has multiple bus interfaces
e Memory or devices in the memory map have different wait states
e Some memory accesses are buffered or speculative.

“Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees the
order of memory accesses. Otherwise, if the order of memory accesses is critical, the software must include
memory barrier instructions to force that ordering. The processor provides the following memory barrier
instructions:

DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before
subsequent memory transactions. See “DMB”.

DSB

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete
before subsequent instructions execute. See “DSB".

ISB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See “ISB”.

SAMGS55 [DATASHEET] 67

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

MPU Programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by
subsequent instructions.

13.4.2.5

Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band
regions occupy the lowest 1 MB of the SRAM and peripheral memory regions.

The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:

e Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 13-6.
e Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in
Table 13-7.
Table 13-6. SRAM Memory Bit-banding Regions
Address Range Memory Region Instruction and Data Accesses

0x20000000-0x200FFFFF | SRAM bit-band region

Direct accesses to this memory range behave as SRAM memory accesses,
but this region is also bit-addressable through bit-band alias.

0x22000000-0x23FFFFFF | SRAM bit-band alias operation is performed as read-modify-write. Instruction accesses are not

Data accesses to this region are remapped to bit-band region. A write

remapped.

Table 13-7.

Peripheral Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

0x40000000—-0x400FFFFF | Peripheral bit-band alias

Direct accesses to this memory range behave as peripheral memory
accesses, but this region is also bit-addressable through bit-band alias.

0x42000000-0x43FFFFFF | Peripheral bit-band region | operation is performed as read-modify-write. Instruction accesses are not

Data accesses to this region are remapped to bit-band region. A write

permitted.

Notes: 1.

A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or peripheral bit-band
region.

Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the transfer size of the
instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:

bit _word_offset = (byte_offset x 32) + (bit_nunber x 4)
bit _word addr = bit_band _base + bit_word offset

where:

Bit _word_of f set is the position of the target bit in the bit-band memory region.

Bit _word_addr is the address of the word in the alias memory region that maps to the targeted bit.
Bi t band_base is the starting address of the alias region.

Byt e_of f set is the number of the byte in the bit-band region that contains the targeted bit.

Bi t _nunber is the bit position, 0-7, of the targeted bit.

Figure 13-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-
band region:
e The alias word at 0x23FFFFEO maps to hit[0] of the bit-band byte at 0x200FFFFF: Ox23FFFFEO =
0x22000000 + (OXFFFFF*32) + (0*4).
e The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at Ox200FFFFF: Ox23FFFFFC =
0x22000000 + (OXFFFFF*32) + (7*4).
68 SAMG55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 =
0x22000000 + (0*32) + (0*4).

e The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C =
0x22000000+ (0*32) + (7*4).
Figure 13-4. Bit-band Mapping

32 MB alias region

I 0x23FFFFFC I O0x23FFFFF8 " O0x23FFFFF4 | Ox23FFFFFO | Ox23FFFFEC | Ox23FFFFE8 | Ox23FFFFE4 I 0x23FFFFEOQ I

o o o

I 0x2200001C I 0x22000018 0x22000014 0x22000010 0x2200000C 0x22000008 0x22000004 I 0x22000000 I

1 MB SRAM bit-band region

‘76543210’765432107654321076543210

T T T T
O0x200FFFFF 0x200FFFFE 0x200FFFFD 0x200FFFFC
I I I I

°
°

°

765432107654321076543210‘76543210’

U U T T
0x20000003 0x20000002 0x20000001 0x20000000
I I I I

Directly Accessing an Alias Region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-

band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to O
writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF.
Writing 0x00 has the same effect as writing OxOE.
Reading a word in the alias region:
e (0x00000000 indicates that the targeted bit in the bit-band region is set to 0
e 0x00000001 indicates that the targeted bit in the bit-band region is set to 1
Directly Accessing a Bit-band Region

“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the bit-band
regions.

13.4.2.6 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,

bytes 0-3 hold the first stored word, and bytes 4—7 hold the second stored word. “Little-endian Format” describes
how words of data are stored in memory.

Little-endian Format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and
the most significant byte at the highest-numbered byte. For example:

Atmel SAMG55 [DATASHEET] 69

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Figure 13-5. Little-endian Format

Memory Register

31 2423 1615 8 7 0

Address A BO |Isbhyte B3 B2 B1 BO
A+1 B1
A+2 B2

A+3 B3 | msbhyte

13.4.2.7 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking
mechanism that a thread or process can use to obtain exclusive access to a memory location. The software can
use them to perform a guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that
location.

A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a
register. If this bit is:
e 0: ltindicates that the thread or process gained exclusive access to the memory, and the write succeeds,
e 1:ltindicates that the thread or process did not gain exclusive access to the memory, and no write is
performed.
The pairs of Load-Exclusive and Store-Exclusive instructions are:
e The word instructions LDREX and STREX
e The halfword instructions LDREXH and STREXH
e The byte instructions LDREXB and STREXB.
The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.
To perform an exclusive read-modify-write of a memory location, the software must:
1. Use a Load-Exclusive instruction to read the value of the location.
2. Update the value, as required.
3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location
4. Test the returned status bit. If this bit is:
0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out of date. The
software must retry the read-modify-write sequence.

The software can use the synchronization primitives to implement a semaphore as follows:

1. Use aLoad-Exclusive instruction to read from the semaphore address to check whether the semaphore is
free.

2. If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore
address.

3. If the returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the
software has claimed the semaphore. However, if the Store-Exclusive instruction failed, another process
might have claimed the semaphore after the software performed the first step.

70 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.
The processor removes its exclusive access tag if:
e It executes a CLREX instruction
e It executes a Store-Exclusive instruction, regardless of whether the write succeeds.
e An exception occurs. This means that the processor can resolve semaphore conflicts between different
threads.
In a multiprocessor implementation:
e Executing a CLREX instruction removes only the local exclusive access tag for the processor
e Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all
global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX” and “CLREX".

13.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for
generation of these instructions:

Table 13-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t _ LDREXW (uint32_t *addr)

LDREXH uintlé_t _LDREXH (uint16_t *addr)

LDREXB uint8_t __LDREXB (uint8_t *addr)

STREX uint32_t __ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t __ STREXH (uint16_t value, uint16_t *addr)
STREXB uint32_t _ STREXB (uint8_t value, uint8_t *addr)
CLREX void _ CLREX (void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the required LDREXB operation:
__ldrex((vol atile char *) OxFF);

13.4.3 Exception Model
This section describes the exception model.

13.4.3.1 Exception States

Each exception is in one of the following states:
Inactive

The exception is not active and not pending.
Pending
The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to
pending.

Atmel SAMG55 [DATASHEET] 71

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Active

An exception is being serviced by the processor but has not completed.
An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in
the active state.

Active and Pending

The exception is being serviced by the processor and there is a pending exception from the same source.

13.4.3.2 Exception Types

The exception types are:
Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception.
When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset
is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest
priority exception other than reset. It is permanently enabled and has a fixed priority of -2.
NMlIs cannot be:
e Masked or prevented from activation by any other exception.
e Preempted by any exception other than Reset.
Hard Fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have
higher priority than any exception with configurable priority.

Memory Management Fault (MemManage)

A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU
or the fixed memory protection constraints determines this fault, for both instruction and data memory transactions.
This fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is
disabled.

Bus Fault

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in the memory system.

Usage Fault

A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:
An undefined instruction

An illegal unaligned access

An invalid state on instruction execution

An error on exception return.

The following can cause a Usage Fault when the core is configured to report them:
e An unaligned address on word and halfword memory access
A division by zero.

72 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

SVCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications
can use SVC instructions to access OS kernel functions and device drivers.

PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context
switching when no other exception is active.

SysTick
A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate
a SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the
processor.

Table 13-9. Properties of the Different Exception Types

Exception Vector Address

Number® Irqg Number® | Exception Type | Priority or Offset® Activation

1 - Reset -3, the highest | 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -

4 -12 Memory Configurable® | 0x00000010 Synchronous

management fault

Synchronous when precise,

5 -11 Bus fault Configurable® | 0x00000014 asynchronous when imprecise
6 -10 Usage fault Configurable® | 0x00000018 Synchronous

7-10 - - - Reserved -

11 -5 SvCall Configurable® | 0x0000002C Synchronous

12-13 - - - Reserved -

14 -2 PendSV Configurable® | 0x00000038 Asynchronous

15 -1 SysTick Configurable® | 0x0000003C Asynchronous

16 and above | 0 and above Interrupt (IRQ) Configurable® | 0x00000040 and above® | Asynchronous

Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other
than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register”.

See “Vector Table” for more information
See “System Handler Priority Registers”
See “Interrupt Priority Registers”
Increasing in steps of 4.

aprwn

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.
Privileged software can disable the exceptions that Table 13-9 shows as having configurable priority, see:

e “System Handler Control and State Register”

e “Interrupt Clear-enable Registers”.

Atmel SAMG55 [DATASHEET] 73

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault
Handling”.

13.4.3.3 Exception Handlers

The processor handles exceptions using:
e Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ49 are the exceptions handled by ISRs.
e Fault Handlers
Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault
handlers.
e System Handlers

NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by
system handlers.

13.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception
vectors, for all exception handlers. Figure 13-6 shows the order of the exception vectors in the vector table. The
least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 13-6. Vector Table

Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 SysTick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SvCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -11 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004
Initial SP value

0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR
to relocate the vector table start address to a different memory location, in the range 0x00000080 to Ox3FFFFF80,
see “Vector Table Offset Register”.

74 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.4.3.5 Exception Priorities

As Table 13-9 shows, all exceptions have an associated priority, with:
e A lower priority value indicating a higher priority
e Configurable priorities for all exceptions except Reset, Hard fault and NMI.
If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0.

For information about configuring exception priorities see “System Handler Priority Registers”, and “Interrupt

Priority Registers”.

Note: Configurable priority values are in the range 0—15. This means that the Reset, Hard fault, and NMI exceptions, with
fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has

higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number
takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is
processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority
exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

13.4.3.6 Interrupt Priority Grouping
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each
interrupt priority register entry into two fields:
e An upper field that defines the group priority
e Alower field that defines a subpriority within the group.
Only the group priority determines preemption of interrupt exceptions. When the processor is executing an

interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not
preempt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they
are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the
lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application
Interrupt and Reset Control Register”.
13.4.3.7 Exception Entry and Return

Descriptions of exception handling use the following terms:
Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its
priority is higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more
information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” more
information.

Atmel SAMG55 [DATASHEET] 75

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Return

This occurs when the exception handler is completed, and:
e There is no pending exception with sufficient priority to be serviced
e The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred.
See “Exception Return” for more information.

Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending
exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the
new exception handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous
exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that
exception. State saving is not affected by late arrival because the state saved is the same for both exceptions.
Therefore the state saving continues uninterrupted. The processor can accept a late arriving exception until the
first instruction of the exception handler of the original exception enters the execute stage of the processor. On
return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in
Thread mode, or the new exception is of a higher priority than the exception being handled, in which case the new
exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see
“Exception Mask Registers”. An exception with less priority than this is pending but is not handled by the
processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the
processor pushes information onto the current stack. This operation is referred as stacking and the structure of
eight data words is referred to as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point
state on exception entry. Figure 13-7 shows the Cortex-M4 stack frame layout when floating-point state is
preserved on the stack as the result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M
implementations without an FPU. Figure 13-7 shows this stack frame also.

76 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Figure 13-7. Exception Stack Frame

{aligner} < ! Pre-IRQ top of stack

FPSCR
S15
S14
S13
S12
S11
S10

S9
S8
S7
S6
S5
S4
S3
s2 1
s1 [. h
0 : Taligner) ! l— Pre-IRQ top of stack
XPSR Decreasing XPSR
PC memory PC
R address R
R12 R12
R3 R3
R2 v R2
R1 R1
RO < IRQ top of stack RO « IRQ top of stack

Exception frame with Exception frame without
floating-point storage floating-point storage

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the
stack frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start
address from the vector table. When stacking is complete, the processor starts executing the exception handler. At
the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer
corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception
handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception

handler for this exception and does not change the pending status of the earlier exception. This is the late arrival
case.

Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions
to load the EXC_RETURN value into the PC:

e An LDM or POP instruction that loads the PC
e An LDR instruction with the PC as the destination.
e A BX instruction using any register.

Atmel SAMGS55 [DATASHEET] 77

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value
to detect when the processor has completed an exception handler. The lowest five bits of this value provide
information on the return stack and processor mode. Table 13-10 shows the EXC_RETURN values with a
description of the exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the
processor that the exception is complete, and the processor initiates the appropriate exception return sequence.

Table 13-10. Exception Return Behavior

EXC_RETURN[31:0] Description
Return to Handler mode, exception return uses non-floating-point state
OXFFFFFFFL from the MSP and execution uses MSP after return.
OXEFEEFEF9 Return_to Thread mode, exception return uses state from MSP and
execution uses MSP after return.
OXEFEEFEED Return.to Thread mode, exception return uses state from the PSP and
execution uses PSP after return.
Return to Handler mode, exception return uses floating-point-state from
OXFFFFFFEL MSP and execution uses MSP after return.
Return to Thread mode, exception return uses floating-point state from
OXFFFFFFED MSP and execution uses MSP after return.
OXEFEEFEED Return to Thread mode, exception return uses floating-point state from PSP
and execution uses PSP after return.

13.4.3.8 Fault Handling

Faults are a subset of the exceptions, see “Exception Model”. The following generate a fault:
e A hbus error on:
— Aninstruction fetch or vector table load
— Adata access
e An internally-detected error such as an undefined instruction
e An attempt to execute an instruction from a memory region marked as Non-Executable (XN).
e A privilege violation or an attempt to access an unmanaged region causing an MPU fault.
Fault Types
Table 13-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the

register bit that indicates that the fault has occurred. See “Configurable Fault Status Register” for more information
about the fault status registers.

78 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Table 13-11. Faults
Fault Handler Bit Name Fault Status Register
Bus error on a vector read VECTTBL
Hard fault “Hard Fault Status Register”
Fault escalated to a hard fault FORCED
MPU or default memory map mismatch: - -
on instruction access IAccvioL®™
on data access Memory DACCVIOL®
: . . management “MMFSR: Memory Management Fault Status
during exception stacking fault MSTKERR Subregister”
during exception unstacking MUNSTKERR
during lazy floating-point state preservation MLSPERR®)
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR
“BFSR: Bus Fault Status Subregister”
during lazy floating-point state preservation LSPERR®
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state INVSTATE
Usage fault “UFSR: Usage Fault Status Subregister”
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO
Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction with
ICI continuation.

3. Only present in a Cortex-M4F device

Fault Escalation and Hard Faults

Atmel

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority
Registers”. The software can disable the execution of the handlers for these faults, see “System Handler Control
and State Register”.

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in
“Exception Model".

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and
the fault is described as escalated to hard fault. Escalation to hard fault occurs when:
e A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs
because a fault handler cannot preempt itself; it must have the same priority as the current priority level.
e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the
handler for the new fault cannot preempt the currently executing fault handler.

SAMGS55 [DATASHEET] 79

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e An exception handler causes a fault for which the priority is the same as or lower than the currently
executing exception.

e A fault occurs and the handler for that fault is not enabled.
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a
hard fault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack
push for the handler failed. The fault handler operates but the stack contents are corrupted.
Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than
Reset, NMI, or another hard fault.
Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault
address register indicates the address accessed by the operation that caused the fault, as shown in Table 13-12.

Table 13-12. Fault Status and Fault Address Registers

Status Register Address Register
Handler Name Name Register Description
Hard fault SCB_HFSR - “Hard Fault Status Register”
“MMFSR: Memory Management Fault Status Subregister”
Memory MMFSR SCB_MMFAR / J _ E
management fault “MemManage Fault Address Register”
“BFSR: Bus Fault Status Subregister”
Bus fault BFSR SCB_BFAR)
“Bus Fault Address Register”
Usage fault UFSR - “UFSR: Usage Fault Status Subregister”

Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the
processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until
either:

e ltisreset
e An NMI occurs
e ltis halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the lockup
state.

80 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

13.5 Power Management

The Cortex-M4 processor sleep modes reduce the power consumption:
e Sleep mode stops the processor clock
e Deep sleep mode stops the system clock and switches off the PLL and flash memory.
The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Register”.

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep
mode.

13.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor.
Therefore, the software must be able to put the processor back into sleep mode after such an event. A program
might have an idle loop to put the processor back to sleep mode.

13.5.1.1 Wait for Interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a
WFI instruction it stops executing instructions and enters sleep mode. See “WFI” for more information.

13.5.1.2 Wait for Event

The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event
register. When the processor executes a WFE instruction, it checks this register:
e Ifthe register is 0, the processor stops executing instructions and enters sleep mode
e If the register is 1, the processor clears the register to 0 and continues executing instructions without
entering sleep mode.

See “WFE” for more information.

13.5.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception
handler, it returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that
only require the processor to run when an exception occurs.

13.5.2 Wakeup from Sleep Mode

The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

13.5.2.1 Wakeup from WFI or Sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception
entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an
interrupt arrives that is enabled and has a higher priority than the current exception priority, the processor wakes
up but does not execute the interrupt handler until the processor sets PRIMASK to zero. For more information
about PRIMASK and FAULTMASK, see “Exception Mask Registers”.

Atmel SAMG55 [DATASHEET] 81

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.5.2.2 Wakeup from WFE

The processor wakes up if:
e It detects an exception with sufficient priority to cause an exception entry
e It detects an external event signal. See “External Event Input”
e In a multiprocessor system, another processor in the system executes an SEV instruction.
In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes

up the processor, even if the interrupt is disabled or has insufficient priority to cause an exception entry. For more
information about the SCR, see “System Control Register”.

13.5.2.3 External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake the
processor from WFE, or to set the internal WFE event register to 1 to indicate that the processor must not enter
sleep mode on a later WFE instruction. See “Wait for Event” for more information.

13.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for
these instructions:

void __WFE(void) // Wit for Event

void __ Wl (void) // Wait for Interrupt

82 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15 A t I I IeL

13.6 Cortex-M4 Instruction Set

13.6.1 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 13-13 lists the supported instructions.

Angle brackets, <>, enclose alternative forms of the operand

Braces, {}, enclose optional operands

The Operands column is not exhaustive

Op2 is a flexible second operand that can be either a register or a constant
Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 13-13. Cortex-M4 Instructions

Mnemonic Operands Description Flags
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C.V
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,CV
ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C

B label Branch -

BFC Rd, #Isb, #width Bit Field Clear -

BFI Rd, Rn, #lsb, #width Bit Field Insert -

BIC, BICS {Rd.,} Rn, Op2 Bit Clear N,z,C
BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -
CBNz Rn, label Compare and Branch if Non Zero -

cBz Rn, label Compare and Branch if Zero -
CLREX - Clear Exclusive -

CLZ Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,CV
CMP Rn, Op2 Compare N,Z,C\V
CPSID i Change Processor State, Disable Interrupts -
CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C
ISB - Instruction Synchronization Barrier -

IT - If-Then condition block -

LDM Rn{!}, reglist Load Multiple registers, increment after -

Atmel

SAMGS55 [DATASHEET] 83

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Table 13-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
LDMDB, LDMEA Rn{1}, reglist Load Multiple registers, decrement before -
LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after -
LDR Rt, [Rn, #offset] Load Register with word -
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -
LDREX Rt, [Rn, #offset] Load Register Exclusive -
LDREXB Rt, [Rn] Load Register Exclusive with byte -
LDREXH Rt, [Rn] Load Register Exclusive with halfword -
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -
LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -
LDRT Rt, [Rn, #offset] Load Register with word -
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -
MOV, MOVS Rd, Op2 Move N,Z,C
MOVT Rd, #imm16 Move Top -
MOVW, MOV Rd, #imm16 Move 16-bit constant N,zZ,C
MRS Rd, spec_reg Move from special register to general register -
MSR spec_reg, Rm Move from general register to special register N,Z,CV
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z
MVN, MVNS Rd, Op2 Move NOT N,z,C
NOP - No Operation -
ORN, ORNS {Rd.} Rn, Op2 Logical OR NOT N,Z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -
POP reglist Pop registers from stack -
PUSH reglist Push registers onto stack -
QADD {Rd,} Rn, Rm Saturating double and Add Q
QADD16 {Rd,} Rn, Rm Saturating Add 16 -
QADDS8 {Rd,} Rn, Rm Saturating Add 8 -
QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -
QDADD {Rd,} Rn, Rm Saturating Add Q
QDsSuUB {Rd,} Rn, Rm Saturating double and Subtract Q
QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -
QsSuB {Rd,} Rn, Rm Saturating Subtract Q

84 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

Table 13-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
QSuUB16 {Rd.,} Rn, Rm Saturating Subtract 16 -
QSuUBS8 {Rd,} Rn, Rm Saturating Subtract 8 -
RBIT Rd, Rn Reverse Bits -
REV Rd, Rn Reverse byte order in a word -
REV16 Rd, Rn Reverse byte order in each halfword -
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,zZ,C
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C\V
SADD16 {Rd,} Rn, Rm Signed Add 16 GE
SADDS8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE
SASX {Rd,} Rn, Rm Signed Add GE
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C\V
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract -
SDIV {Rd,} Rn, Rm Signed Divide -
SEL {Rd,} Rn, Rm Select bytes -
SEV - Send Event -
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -
SHADDS8 {Rd,} Rn, Rm Signed Halving Add 8 -
SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -
SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -
SHSUBS8 {Rd,} Rn, Rm Signed Halving Subtract 8 -
gmtﬁ'?BB: SS,\'\//IIII_‘:_II_B_I-_F Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q
SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -
gmtﬁt_?g Ssl\l\//llll__ﬁll__'rB'l-'r RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -
SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -
SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q
SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q
SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual
SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -
SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract -
SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -
SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q
SAMG55 [DATASHEET] 85

Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Table 13-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
gmgt_?g SSI\,\//IIIEJJII__'I?': {Rd,} Rn, Rm Signed Multiply (halfwords) -
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -
SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -
SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
SSAT16 Rd, #n, Rm Signed Saturate 16 Q
SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE
SSUB16 {Rd,} Rn, Rm Signed Subtract 16 -
SSUBS8 {Rd,} Rn, Rm Signed Subtract 8 -
STM Rn{1}, reglist Store Multiple registers, increment after -
STMDB, STMEA Rn{'}, reglist Store Multiple registers, decrement before -
STMFD, STMIA Rn{!}, reglist Store Multiple registers, increment after -
STR Rt, [Rn, #offset] Store Register word -
STRB, STRBT Rt, [Rn, #offset] Store Register byte -
STRD Rt, Rt2, [Rn, #offset] Store Register two words -
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -
STREXB Rd, Rt, [Rn] Store Register Exclusive byte -
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -
STRH, STRHT Rt, [Rn, #offset] Store Register halfword -
STRT Rt, [Rn, #offset] Store Register word -
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V
svC #imm Supervisor Call -
SXTAB {Rd,} Rn, Rm,{,ROR #} | Extend 8 bits to 32 and add -
SXTAB16 {Rd,} Rn, Rm,{,ROR #} | Dual extend 8 bits to 16 and add -
SXTAH {Rd,} Rn, Rm,{,ROR #} | Extend 16 bits to 32 and add -
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -
TBB [Rn, Rm] Table Branch Byte -
TBH [Rn, Rm, LSL #1] Table Branch Halfword -
TEQ Rn, Op2 Test Equivalence N,Z,C
TST Rn, Op2 Test N,Z,C
UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE
UADDS8 {Rd,} Rn, Rm Unsigned Add 8 GE
USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE

86 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

Table 13-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -
UHADDS8 {Rd,} Rn, Rm Unsigned Halving Add 8 -
UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -
UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -
UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -
UHSUBS {Rd,} Rn, Rm Unsigned Halving Subtract 8 -
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract -
ubDIv {Rd,} Rn, Rm Unsigned Divide -
UMAAL RdLo, RdHi, Rn, Rm g;_sbiig:rzzgul\lgultiply Accumulate Accumulate Long (32 x32+32+32), |
UMLAL RdLo, RdHi, Rn, Rm Unsigned Multiply with Accumulate (32 x 32 + 64), 64-bit result -
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -
UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 -
UQADDS8 {Rd.,} Rn, Rm Unsigned Saturating Add 8 -
UQASX {Rd.,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -
UQSAX {Rd.,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -
UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -
UQSUBS {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -
USADS8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -
USADAS {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q
UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE
USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE
UsuB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE
UXTAB {Rd,} Rn, Rm,{,ROR #} | Rotate, extend 8 bits to 32 and Add -
UXTAB16 {Rd.,} Rn, Rm,{,ROR #} | Rotate, dual extend 8 bits to 16 and Add -
UXTAH {Rd,} Rn, Rm,{,ROR #} | Rotate, unsigned extend and Add Halfword -
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -
UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -
VABS.F32 Sd, Sm Floating-point Absolute -
VADD.F32 {Sd,} Sn, Sm Floating-point Add -
VCMP E32 Sd, <Sm | #0.0> ;Sr(])(;nzp;roe two floating-point registers, or one floating-point register FPSCR
VONPERZ | sa.<omisoo- | CAMPa udfosingsont egser, or one st pan g | g
VCVT.S32.F32 Sd, Sm Convert between floating-point and integer -

SAMGS55 [DATASHEET] 87

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

Table 13-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
VCVT.S16.F32 Sd, Sd, #fbits Convert between floating-point and fixed point -
VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding -
VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision -
VCVTT<B|T>.F32.F16 | Sd, Sm Converts single-precision register to half-precision -
VDIV.F32 {Sd,} Sn, Sm Floating-point Divide -
VFMA.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Accumulate -
VFNMA.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Accumulate -
VFMS.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Subtract -
VFNMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract -
VLDM.F<32|64> Rn{'}, list Load Multiple extension registers -
VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory -
VLMA.F32 {Sd,} Sn, Sm Floating-point Multiply Accumulate -
VLMS.F32 {Sd,} Sn, Sm Floating-point Multiply Subtract -
VMOV.F32 Sd, #imm Floating-point Move immediate —
VMOV Sd, Sm Floating-point Move register -
VMOV Sn, Rt Copy ARM core register to single precision -
VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision -
VMOV Dd[x], Rt Copy ARM core register to scalar -
VMOV Rt, Dn[x] Copy scalar to ARM core register -
VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C.\V
VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR
VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply -
VNEG.F32 Sd, Sm Floating-point Negate -
VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add -
VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract -
VNMUL {Sd,} Sn, Sm Floating-point Multiply -
VPOP list Pop extension registers -
VPUSH list Push extension registers -
VSQRT.F32 Sd, Sm Calculates floating-point Square Root -
VSTM Rn{'}, list Floating-point register Store Multiple -
VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory -
VSUB.F<32|64> {Sd,} Sn, Sm Floating-point Subtract -
WFE - Wait For Event -
WFI - Wait For Interrupt -

88 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

13.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can
generate these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler
does not support an appropriate intrinsic function, the user might have to use inline assembler to access some
instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly
access:

Table 13-14. CMSIS Functions to Generate some Cortex-M4 Instructions

Instruction CMSIS Function

CPSIE | void __enable_irg(void)

CPSID | void __disable_irg(void)

CPSIE F void __enable_fault_irg(void)

CPSID F void __disable_fault_irg(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t __ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __SEV/(void)

WFE void __ WFE(void)

WFI void __ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR
instructions:

Table 13-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register Access CMSIS Function
Read uint32_t _ get PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t __get FAULTMASK (void
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t __get_ BASEPRI (void)
BASEPRI
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get. CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t __get_ MSP (void)
MSP
Write void __set_MSP (uint32_t TopOfMainStack)
S Read uint32_t __get_ PSP (void)
PSP
Write void __set PSP (uint32_t TopOfProcStack)
/It L SAMG55 [DATASHEET] 89
me Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.3 Instruction Descriptions

13.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions
act on the operands and often store the result in a destination register. When there is a destination register in the
instruction, it is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand”.

13.6.3.2 Restrictions when Using PC or SP
Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands
or destination register can be used. See instruction descriptions for more information.

Note: Bit[O] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct execution,
because this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb instructions.

13.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand?2 in the
descriptions of the syntax of each instruction.
Operand?2 can be a:
e “Constant”
e “Register with Optional Shift”
Constant
Specify an Operand?2 constant in the form:
#const ant
where constant can be:
e Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
e Any constant of the form 0x00XYO00XY
e Any constant of the form 0xXY00XY00
e Any constant of the form OxXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.
In addition, in a small number of instructions, constant can take a wider range of values. These are described in
the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be
produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other
constant.

Instruction Substitution
The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant

that is not permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the
equivalent instruction CMN Rd, #0x2.

Register with Optional Shift

Specify an Operand2 register in the form:
Rm{, shift}

where:
Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:

90 SAMGS5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

ASR #n arithmetic shift right n bits, 1 < n < 32.
LSL #n logical shift left n bits, 1 <n < 31.
LSR #n logical shift right n bits, 1 < n < 32.
ROR #n rotate right n bits, 1 <n < 31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the
instruction. However, the contents in the register Rm remains unchanged. Specifying a register with shift also
updates the carry flag when used with certain instructions. For information on the shift operations and how they
affect the carry flag, see “Flexible Second Operand”.

13.6.34 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift length.
Register shift can be performed:
e Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register
e During the calculation of Operand2 by the instructions that specify the second operand as a register with
shift. See “Flexible Second Operand”. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs.
Register shift operations update the carry flag except when the specified shift length is 0. The following
subsections describe the various shift operations and how they affect the carry flag. In these descriptions, Rm is
the register containing the value to be shifted, and n is the shift length.

ASR
Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the

right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the
result. See Figure 13-8.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the result being rounded
towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e Ifnis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e Ifnis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 13-8. ASR #3

31 | 5£;j D

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-
hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 13-9.

Atmel SAMG55 [DATASHEET] 91

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

The LSR #n operation can be used to divide the value in the register Rm by 2", if the value is regarded as an
unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

Figure 13-9. LSR#3

[
000 Flag
vV VY

31 [Sl;%—i D

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand
32-n bits of the result; and it sets the right-hand n bits of the result to 0. See Figure 13-10.

The LSL #n operation can be used to multiply the value in the register Rm by 2", if the value is regarded as an
unsigned integer or a two’'s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-
n], of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

Figure 13-10. LSL #3

«o—

31 5|4

Cary T 1T t

[I
w
N ¢O—
-
o +O—

=

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result; and it moves the right-hand n bits of the register into the left-hand n bits of the result. See
Figure 13-11.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register
Rm.

e Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated
to bit[31] of Rm.

e ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

92 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Figure 13-11. ROR #3

RRX

Carry

3 || e

31 AEES Sﬁ;; D

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into
bit[31] of the result. See Figure 13-12.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 13-12. RRX

13.6.3.5

Carry
Flag

31|30 110

TS s

Address Alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word
access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

The Cortex-M4 processor supports unaligned access only for the following instructions:

LDR, LDRT
LDRH, LDRHT
LDRSH, LDRSHT
STR, STRT
STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned access, and
therefore their accesses must be address-aligned. For more information about usage faults, see “Fault Handling”.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not
support unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned.
To avoid accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control
Register to trap all unaligned accesses, see “Configuration and Control Register”.

13.6.3.6

PC-relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is
represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the
required offset from the label and the address of the current instruction. If the offset is too big, the assembler
produces an error.

Atmel

For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4
bytes.

SAMGS55 [DATASHEET] 93

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4
bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

e Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a
number, or an expression of the form [PC, #number].

13.6.3.7 Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status
Register (APSR) according to the result of the operation, see “Application Program Status Register”. Some
instructions update all flags, and some only update a subset. If a flag is not updated, the original value is
preserved. See the instruction descriptions for the flags they affect.
An instruction can be executed conditionally, based on the condition flags set in another instruction, either:

e Immediately after the instruction that updated the flags

e After any number of intervening instructions that have not updated the flags.
Conditional execution is available by using conditional branches or by adding condition code suffixes to
instructions. See Table 13-16 for a list of the suffixes to add to instructions to make them conditional instructions.
The condition code suffix enables the processor to test a condition based on the flags. If the condition test of a
conditional instruction fails, the instruction:

e Does not execute
e Does not write any value to its destination register
e Does not affect any of the flags
e Does not generate any exception.
Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for

more information and restrictions when using the IT instruction. Depending on the vendor, the assembler might
automatically insert an IT instruction if there are conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.
This section describes:
e “Condition Flags”
e “Condition Code Suffixes”.
Condition Flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to O otherwise.

\% Set to 1 when the operation caused overflow, cleared to O otherwise.

For more information about the APSR, see “Program Status Register”.

A carry occurs:

e Ifthe result of an addition is greater than or equal to 232

e If the result of a subtraction is positive or zero

e Asthe result of an inline barrel shifter operation in a move or logical instruction.
An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation
been performed at infinite precision, for example:

e If adding two negative values results in a positive value

e If adding two positive values results in a negative value

e If subtracting a positive value from a negative value generates a positive value

94 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is
discarded. See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more
information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if
the condition code flags in the APSR meet the specified condition. Table 13-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.
Table 13-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 13-16. Condition Code Suffixes

Suffix Flags Meaning

EQ z=1 Equal

NE Z=0 Not equal

CSorHS c=1 Higher or same, unsigned >
CCorlLO Cc=0 Lower, unsigned <

MI N=1 Negative

PL N=0 Positive or zero

VS v=1 Overflow

VvC V=0 No overflow

HI C=1landzZ=0 Higher, unsigned >

LS C=0o0rz=1 Lower or same, unsigned <

GE N=V Greater than or equal, signed >
LT N!=V Less than, signed <

GT Z=0and N=V Greater than, signed >

LE Z=1landN!=V Less than or equal, signed <
AL Can have any value Always. This is the default when no suffix is specified.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. RO =

ABS(R1).
MOVS RO, R1 ; RO = Rl, setting flags
T M ; I Tinstruction for the negative condition
RSBM RO, R1, #0 ; If negative, RO = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is
greater than R1 and R2 is greater than R3.

cwP RO, R1 ; Conmpare RO and R1, setting flags

I TT GT ; I Tinstruction for the two GI conditions

CVPGT R2, R3 ; If 'greater than', conpare R2 and R3, setting flags
MOVGT R4, RS ; If still "greater than', do R4 = RS

SAMGS55 [DATASHEET] 95

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

13.6.3.8 Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the
operands and destination register specified. For some of these instructions, the user can force a specific
instruction size by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix
forces a 16-bit instruction encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the

requested width, it generates an error.

Note: In some cases, it might be necessary to specify the .W suffix, for example if the operand is the label of an instruction or
literal data, as in the case of branch instructions. This is because the assembler might not automatically generate the
right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any.

The example below shows instructions with the instruction width suffix.

BCS. W | abel ; creates a 32-bit instruction even for a short
; branch
ADDS. WRO, RO, Rl ; creates a 32-bit instruction even though the sane
operation can be done by a 16-bit instruction

96 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

The table below shows the memory access instructions.

Table 13-17. Memory Access Instructions
Mnemonic Description
ADR Load PC-relative address
CLREX Clear Exclusive
LDM{mode} Load Multiple registers
LDR{type} Load Register using immediate offset
LDR{type} Load Register using register offset
LDR{type}T Load Register with unprivileged access
LDR Load Register using PC-relative address
LDRD Load Register Dual
LDREX{type} Load Register Exclusive
POP Pop registers from stack
PUSH Push registers onto stack
STM{mode} Store Multiple registers
STR{type} Store Register using immediate offset
STR{type} Store Register using register offset
STR{type}T Store Register with unprivileged access
STREX{type} Store Register Exclusive

Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

SAMGS55 [DATASHEET]

13.6.4 Memory Access Instructions

97

13.6.4.1 ADR
Load PC-relative address.

Syntax

ADR{ cond} Rd, | abel
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
label is a PC-relative expression. See “PC-relative Expressions”.
Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination
register.

ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated
is set to 1 for correct execution.

Values of label must be within the range of —4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are not word-
aligned. See “Instruction Width Selection”.

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples
ADR Rl, Text Message ; Wite address value of a location |abelled as
; Text Message to R1
98 SAMGH55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax
op{type}{cond} R, [Rn {, #offset}] ; i mredi ate of fset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; imredi ate offset, two words
opD{cond} R, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} R, Rt2, [Rn], #offset ; post-indexed, two words
where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.
cond is an optional condition code, see “Conditional Execution”.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:
Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:
[Rn, #offset]

Atmel

SAMGS55 [DATASHEET] 99

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode
is:

[Rn, #offset]!
Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is
added to or subtracted from the address, and written back into the register Rn. The assembly language syntax for
this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed
or unsigned. See “Address Alignment”.

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 13-18. Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed
Word, halfword, signed
halfword, byte, or signed byte -255 to 4095 -255 to 255 -255 to 255
Two words multiple of 4 in the multiple of 4 in the multiple of 4 in the
range -1020 to 1020 | range -1020 to 1020 | range -1020 to 1020
Restrictions

For load instructions:
e Rtcan be SP or PC for word loads only
e Rt must be different from Rt2 for two-word loads
e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:
e Bit[0] of the loaded value must be 1 for correct execution
e A branch occurs to the address created by changing bit[0] of the loaded value to 0
e If the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:
e Rt can be SP for word stores only
e Rtmustnot be PC
e Rnmustnot be PC
e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
Condition Flags

These instructions do not change the flags.

100 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

Examples

LDR R8, [R10] ; Loads R8 fromthe address in R10.

LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 froma word
; 960 bytes above the address in R5, and
; increnments R5 by 960.

STR R2, [R9,#const-struc] ; const-struc is an expression eval uating
; to a constant in the range 0-4095.

STRH R3, [R4], #4 ;. Store R3 as halfword data into address in
; R4, then increnent R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 froma word 32 bytes above the
; address in R3, and load RO froma word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 : Store RO to address in R8, and store Rl to

; a wrd 4 bytes above the address in RS,

; and then decrenment R8 by 16.

LDR and STR, Register Offset
Load and Store with register offset.

Syntax

op{type}{cond} R, [Rn, Rm{, LSL #n}]
where:
op is one of:

LDR Load Register.
STR Store Register.

type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.
Rt is the register to load or store.

Rn is the register on which the memory address is based.
Rm is a register containing a value to be used as the offset.
LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the

register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either

be signed or unsigned. See “Address Alignment”.
Restrictions

SAMGS55 [DATASHEET] 101

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

In these instructions:

e Rn must not be PC

e Rm must not be SP and must not be PC

e Rtcan be SP only for word loads and word stores
Rt can be PC only for word loads.

When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
STR RO, [R5, R1] ; Store value of RO into an address equal to
; sumof R5 and Rl
LDRSB RO, [R5, Rl, LSL #1] ; Read byte value froman address equal to
; sumof R5 and two times R1, sign extended it
; to a word value and put it in RO
STR RO, [R1, R2, LSL #2] ; Stores RO to an address equal to sumof Rl
; and four times R2

102 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.4.4 LDR and STR, Unprivileged
Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immedi ate of fset
where:
op is one of:

LDR Load Register.
STR Store Register.
type is one of:

B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional Execution”.
Rt is the register to load or store.

Rn is the register on which the memory address is based.
offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.
Operation

These load and store instructions perform the same function as the memory access instructions with immediate
offset, see “LDR and STR, Immediate Offset”. The difference is that these instructions have only unprivileged
access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

Restrictions

In these instructions:
e Rn must not be PC
e Rt must not be SP and must not be PC.

Condition Flags
These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in

; R4 to an address in R7, with unprivil eged access
LDRHT R2, [R2, #8] ; Load hal fword value froman address equal to

; sumof R2 and 8 into R2, with unprivil eged access

Atmel SAMG55 [DATASHEET] 103

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.4.5 LDR, PC-relative
Load register from memory.

Syntax
LDR{type}{cond} Rt, | abel
LDRD{ cond} Rt, Rt2, |abel ; Load two words
where:
type is one of:
B unsigned byte, zero extend to 32 bits.

SB signed byte, sign extend to 32 bits.

H unsigned halfword, zero extend to 32 bits.
SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative Expressions”.
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label
or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either
be signed or unsigned. See “Address Alignment”.

label must be within a limited range of the current instruction. The table below shows the possible offsets between
label and the PC.

Table 13-19. Offset Ranges

Instruction Type Offset Range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection”.
Restrictions
In these instructions:

e Rtcanbe SP or PC only for word loads

e Rt2 must not be SP and must not be PC

e Rt must be different from Rt2.

104 SAMGS5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples

LDR RO, LookUpTabl e ; Load RO with a word of data from an address
; labell ed as LookUpTabl e

LDRSB R7, |ocal data ; Load a byte value froman address | abelled

; as localdata, sign extend it to a word
; value, and put it in R7

13.6.4.6 LDM and STM
Load and Store Multiple registers.

Syntax

op{addr_node}{cond} Rn{!}, reglist
where:
op is one of;

LDM Load Multiple registers.
STM Store Multiple registers.
addr_mode is any one of the following:

1A Increment address After each access. This is the default.
DB Decrement address Before each access.
cond is an optional condition code, see “Conditional Execution”.
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If I'is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see “Examples”.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending
stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending
stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks
Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.
STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in
order of increasing register numbers, with the lowest numbered register using the lowest memory address and the

Atmel SAMGS55 [DATASHEET] 105

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

highest number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4
* (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals
ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of
decreasing register numbers, with the highest numbered register using the highest memory address and the
lowest number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 *
(n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP”for detalils.
Restrictions

In these instructions:

Rn must not be PC

reglist must not contain SP

In any STM instruction, reglist must not contain PC

In any LDM instruction, reglist must not contain PC if it contains LR

e reglist must not contain Rn if the writeback suffix is specified.

When PC is in reglist in an LDM instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
LDM R8, { RO, R2, R9} ; LDMAis a synonymfor LDM
STMDB R1!, {R3-R6, R11, R12}

Incorrect Examples

STM R5!, {R5, R4, R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There nust be at |east one register in the |ist
106 SAMGH55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.4.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

Syntax
PUSH{ cond} regli st
POP{cond} regli st
where:
cond is an optional condition code, see “Conditional Execution”.
reglist is a non-empty list of registers, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based
on SP, and with the final address for the access written back to the SP. PUSH and POP are the preferred
mnemonics in these cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered
register using the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register
using the lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.
Restrictions

In these instructions:
e reglist must not contain SP
e For the PUSH instruction, reglist must not contain PC
e For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
PUSH { RO, R4- R7}
PUSH {R2, LR}
POP {RO, R10, PC}
SAMG55 [DATASHEET 107
Atmel [:

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.4.8 LDREX and STREX
Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{ cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{ cond} Rt, [Rn]

STREXH{ cond} Rd, Rt, [Rn]
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address.
The address used in any Store-Exclusive instruction must be the same as the address in the most recently
executed Load-exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same
data size as the value loaded by the preceding Load-exclusive instruction. This means software must always use a
Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see
“Synchronization Primitives”.

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the
store, it writes 1 to its destination register. If the Store-Exclusive instruction writes O to the destination register, it is
guaranteed that no other process in the system has accessed the memory location between the Load-exclusive
and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding
Load-Exclusive instruction is unpredictable.

Restrictions

In these instructions:

Do not use PC

Do not use SP for Rd and Rt

For STREX, Rd must be different from both Rt and Rn

The value of offset must be a multiple of four in the range 0-1020.

108 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Condition Flags

These instructions do not change the flags.

Examples
MoV R1, #0Ox1 ; Initialize the ‘lock taken' value try
LDREX RO, [LockAddr] ; Load the | ock val ue
cawP RO, #0 ; Is the lock free?
ITT EQ ; I'T instruction for STREXEQ and CMPEQ
STREXEQ RO, R1, [LockAddr] ; Try and claimthe |ock
CMPEQ RO, #0 ; Did this succeed?
BNE try ; No — try again

;. Yes — we have the |ock

13.6.4.9 CLREX

Clear Exclusive.

Syntax
CLREX{ cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write a 1 to its destination register and fail
to perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

See “Synchronization Primitives” for more information.
Condition Flags
These instructions do not change the flags.

Examples
CLREX

Atmel SAMG55 [DATASHEET] 109

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5 General Data Processing Instructions

The table below shows the data processing instructions.

Table 13-20. Data Processing Instructions

Mnemonic Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right

BIC Bit Clear

CLz Count leading zeros

CMN Compare Negative

CMP Compare

EOR Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

MOV Move

MOVT Move Top

MOVW Move 16-bit constant

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword

REVSH Reverse byte order in bottom halfword and sign extend

ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADDS8 Signed Add 8

SASX Signed Add and Subtract with Exchange

SSAX Signed Subtract and Add with Exchange

SBC Subtract with Carry

SHADD16 Signed Halving Add 16

SHADDS Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange

SHSAX Signed Halving Subtract and Add with Exchange
110 SAMGH55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Table 13-20. Data Processing Instructions (Continued)

Mnemonic Description
SHSUB16 Signed Halving Subtract 16
SHSUBS8 Signed Halving Subtract 8
SSUB16 Signed Subtract 16
SSUBS8 Signed Subtract 8
SuUB Subtract
SUBW Subtract
TEQ Test Equivalence
TST Test
UADD16 Unsigned Add 16
UADDS8 Unsigned Add 8
UASX Unsigned Add and Subtract with Exchange
USAX Unsigned Subtract and Add with Exchange
UHADD16 Unsigned Halving Add 16
UHADDS8 Unsigned Halving Add 8
UHASX Unsigned Halving Add and Subtract with Exchange
UHSAX Unsigned Halving Subtract and Add with Exchange
UHSUB16 Unsigned Halving Subtract 16
UHSUBS Unsigned Halving Subtract 8
USADS8 Unsigned Sum of Absolute Differences
USADAS Unsigned Sum of Absolute Differences and Accumulate
USUB16 Unsigned Subtract 16
UsuBS8 Unsigned Subtract 8
/ItmeL SAMG55 [DATASHEET] 111

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax
op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #inml2 ; ADD and SUB only
where:
op is one of:
ADD Add.
ADC Add with Carry.
SUB Subtract.
SBC Subtract with Carry.
RSB Reverse Subtract.
S is an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution”.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the first operand.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.
imm12 is any value in the range 0-4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is
reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide
range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.

See also “ADR”".

Note: ~ ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax that uses
the imm12 operand.

Restrictions

In these instructions:
e Operand2 must not be SP and must not be PC
e Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP
— Any shift in Operand2 must be limited to a maximum of 3 bits using LSL
e Rncanbe SP only in ADD and SUB

112 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— The user must not specify the S suffix
— Rm must not be PC and must not be SP
— If the instruction is conditional, it must be the last instruction in the IT block

e With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only
with the additional restrictions:

— The user must not specify the S suffix
— The second operand must be a constant in the range 0 to 4095.

— Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to Ob00
before performing the calculation, making the base address for the calculation word-aligned.

— Note: To generate the address of an instruction, the constant based on the value of the PC must be
adjusted. ARM recommends to use the ADR instruction instead of ADD or SUB with Rn equal to the
PC, because the assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition Flags
If s is specified, these instructions update the N, Z, C and V flags according to the result.

Examples
ADD R2, R1, R3 ; Sets the flags on the result
SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
RSB R4, R4, #1280 ; Only executed if Cflag set and Z
ADCHI R11, RO, R3 ; flag clear.

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit
integer contained in RO and R1, and place the result in R4 and R5.

64-bit Addition Example
ADDS R4, RO, R2 ; add the least significant words
ADC R5, R1, R3 ; add the nost significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a
96-bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the
result in R6, R9, and R2.

96-bit Subtraction Example

SUBS R6, R6, RO ; subtract the |east significant words
SBCS R9, R2, RL ; subtract the mddle words with carry
SBC R2, R8, Rl1 ; subtract the nost significant words with carry

Atmel SAMGS55 [DATASHEET] 113

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax
op{S}{cond} {Rd,} Rn, Operand2

where:
op is one of:
AND logical AND.
ORR logical OR, or bit set.
EOR logical Exclusive OR.
BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution”.

cond is an optional condition code, see “Conditional Execution”,
Rd is the destination register.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn
and Operand?.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

Restrictions
Do not use SP and do not use PC.
Condition Flags

If s is specified, these instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

114 SAMGS5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Examples

AND RO, R2, #O0xFFO0O0
ORREQ R2, RO, R5

ANDS R9, R8, #0x19

EORS R7, R11, #0x18181818
BI C RO, R1, #Oxab

ORN R7, R11, Rl14, ROR #4

ORNS R7, R11l, R14, ASR #32

13.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax

op{S}{cond} Rd, Rm Rs
op{S}{cond} Rd, Rm #n
RRX{ S}{cond} Rd, Rm

where:

op

Rd
Rm
Rs

is one of:

ASR Arithmetic Shift Right.
LSL Logical Shift Left.

LSR Logical Shift Right.
ROR Rotate Right.

is an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution”.

is the destination register.

is the register holding the value to be shifted.

is the register holding the shift length to apply to the value in Rm. Only the least
significant byte is used and can be in the range 0 to 255.

is the shift length. The range of shift length depends on the instruction:

ASR shift length from 1 to 32

LSL shift length from O to 31

LSR shift length from 1 to 32

ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on
what result is generated by the different instructions, see “Shift Operations”.

Restrictions

Do not use SP and do not use PC.

Atmel

SAMGS55 [DATASHEET] 115

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Condition Flags
If s is specified:
e These instructions update the N and Z flags according to the result
e The C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations”.

Examples
ASR R7, R8, #9 ; Arithnetic shift right by 9 bits
SLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottombyte of R6
RRX R4, RS ; Rotate right with extend.

13.6.5.4 CLz
Count Leading Zeros.

Syntax
CLZ{cond} Rd, Rm
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm is the operand register.
Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result
value is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.
Condition Flags

This instruction does not change the flags.

Examples
CLz R4, RO
CLZNE R2, R3

116 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.5 CMP and CMN
Compare and Compare Negative.

Syntax
CwP{cond} Rn, Operand2
CWMN{ cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional Execution”.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result,
but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an ADDS instruction,
except that the result is discarded.

Restrictions
In these instructions:
e Donotuse PC
e Operand2 must not be SP.
Condition Flags
These instructions update the N, Z, C and V flags according to the result.

Examples
cwP R2, R9
CWN RO, #6400
CMPGT SP, R7, LSL #2

Atmel SAMGS55 [DATASHEET] 117

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.6 MOV and MVN
Move and Move NOT.

Syntax
MOV{ S} {cond} Rd, Operand2
MOV{cond} Rd, #i nml6
MN{ S} {cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution”.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

imm16 is any value in the range 0—65535.

Operation

The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:

e ASR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
LSL{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #nifn!=0
LSR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n
ROR{S}Hcond} Rd, Rm, #n is the preferred syntax for MOV{S}¥cond} Rd, Rm, ROR #n
RRX{SHcond} Rd, Rm is the preferred syntax for MOV{SHcond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:

e MOV{SHcond} Rd, Rm, ASR Rs is a synonym for ASR{SH{cond} Rd, Rm, Rs

e MOV{SHcond} Rd, Rm, LSL Rs is a synonym for LSL{SHcond} Rd, Rm, Rs

e MOV{SHcond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs

e MOV{SHcond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX".

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and
places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.
Restrictions
SP and PC only can be used in the MOV instruction, with the following restrictions:
e The second operand must be a register without shift
e The S suffix must not be specified.
When Rd is PC in a MOV instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX
instruction to branch for software portability to the ARM instruction set.

118 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.7

Condition Flags

If S is specified, these instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

Examples
MOVS R11, #0x000B ; Wite value of 0x000B to R11l, flags get updated
MOV R1, #OxFAO05 ; Wite value of OxFAO5 to R1, flags are not updated
MOVS R10, R12 ; Wite value in R12 to R10, flags get updated
MOV R3, #23 ; Wite value of 23 to R3
MOV R8, SP ; Wite value of stack pointer to R8
M/NS R2, #OxF ; Wite value of OxFFFFFFFO (bitw se inverse of OxF)
; to the R2 and update fl ags.
MOVT
Move Top.
Syntax
MOVT{ cond} Rd, #i mMmi6
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
imm216 is a 16-bit immediate constant.
Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write
does not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.
Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples
MOVT R3, #0xF123 ; Wite O0xF123 to upper hal fword of R3, |ower hal fword
; and APSR are unchanged.

Atmel SAMGS55 [DATASHEET] 119

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.8 REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn
where:
op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the register holding the operand.
Operation

Use these instructions to change endianness of data:
REV converts either:
e 32-bit big-endian data into little-endian data
e 32-bit little-endian data into big-endian data.
REV16 converts either:
e 16-bit big-endian data into little-endian data
e 16-bit little-endian data into big-endian data.
REVSH converts either:
e 16-bit signed big-endian data into 32-bit signed little-endian data
e 16-bit signed little-endian data into 32-bit signed big-endian data.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
REV R3, R7; Reverse byte order of value in R7 and wite it to R3
REV16 RO, RO; Reverse byte order of each 16-bit halfword in RO
REVSH RO, R5; Reverse Signed Hal fword
REVHS R3, R7; Reverse with Hi gher or Sane condition
RBIT R7, R8; Reverse bit order of value in R8 and wite the result to R7.

120 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.9 SADD16 and SADD8
Signed Add 16 and Signed Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
SADD16 Performs two 16-bit signed integer additions.
SADDS8 Performs four 8-bit signed integer additions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel:
The SADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the result in the corresponding halfwords of the destination register.

The SADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
Writes the result in the corresponding bytes of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
SADD16 R1, RO ; Adds the halfwords in RO to the correspondi ng
; halfwords of Rl and wites to correspondi ng hal fword
; of RIL.

SADD8 R4, RO, R5 ; Adds bytes of RO to the corresponding byte in R5 and
; Wwites to the corresponding byte in R4.

Atmel SAMGS55 [DATASHEET] 121

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.10 SHADD16 and SHADDS8
Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SHADD16 Signed Halving Add 16.
SHADDS Signed Halving Add 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The SHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halfword results in the destination register.

The SHADDBS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
SHADD16 R1, RO ; Adds hal fwords in RO to corresponding hal fword of Rl
; and wites halved result to corresponding hal fword in
; R

SHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; wites halved result to corresponding byte in R4.

122 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.11 SHASX and SHSAX

Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is any of:
SHASX Add and Subtract with Exchange and Halving.
SHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to
the right causing a divide by two, or halving.

3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit
to the right causing a divide by two, or halving.

The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit
to the right causing a divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second operand.

4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to
the right causing a divide by two, or halving.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

Atmel SAMGS55 [DATASHEET] 123

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom hal fword of R2
; and wites halved result to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R4 and wites halved result to bottom hal fword of R7

SHSAX RO, R3, R5 ; Subtracts bottom hal fword of R5 fromtop hal fword
; of R3 and wites halved result to top hal fword of RO
; Adds top hal fword of R5 to bottom hal fword of R3 and
; Wwites halved result to bottom hal fword of RO.

124 SAMGS5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.12 SHSUB16 and SHSUBS8
Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

SHSUB16 Signed Halving Subtract 16.

SHSUBS Signed Halving Subtract 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The SHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.
The SHSUBBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand,
2. Shuffles the result by one bit to the right, halving the data,
3. Writes the corresponding signed byte results in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags
These instructions do not change the flags.

Examples
SHSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; of RL and wites to correspondi ng hal fwrd of RL
SHSUB8 R4, RO, R5 ; Subtracts bytes of RO from corresponding byte in R5,
; and wites to corresponding byte in R4.

Atmel SAMGS55 [DATASHEET] 125

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.13 SSUB16 and SSUB8
Signed Subtract 16 and Signed Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SSUB16 Performs two 16-bit signed integer subtractions.
SSUB8 Performs four 8-bit signed integer subtractions.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to change endianness of data:
The SSUB16 instruction:
1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand
2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.
The SSUBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand
2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
SSUB16 R1, RO ; Subtracts halfwords in RO from correspondi ng hal fword
; of RL and wites to corresponding hal fword of Rl
SSUB8 R4, RO, R5 ; Subtracts bytes of R5 fromcorresponding byte in
; RO, and wites to correspondi ng byte of R4.

126 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.14 SASX and SSAX

Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rm Rn

where:
op is any of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SASX instruction:
1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
2. Writes the signed result of the addition to the top halfword of the destination register.

3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first
operand.

4. Writes the signed result of the subtraction to the bottom halfword of the destination register.
The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first
operand.
2. Writes the signed result of the addition to the bottom halfword of the destination register.
3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
4. Writes the signed result of the subtraction to the top halfword of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the condition code flags.

Examples

SASX RO, R4, R5 ; Adds top halfword of R4 to bottom hal fword of R5 and
; Wwites to top hal fword of RO
; Subtracts bottom hal fword of R5 fromtop hal fword of R4
; and wites to bottom hal fword of RO

SSAX R7, R3, R2 ; Subtracts top hal fword of R2 frombottom hal fword of R3
; and wites to bottom hal fword of R7
; Adds top hal fword of R3 with bottom hal fword of R2 and
; Wwites to top hal fword of R7.

Atmel SAMGS55 [DATASHEET] 127

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.15 TST and TEQ
Test bits and Test Equivalence.

Syntax
TST{cond} Rn, Operand2
TEQ cond} Rn, Operand2

where
cond is an optional condition code, see “Conditional Execution”.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the
result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the
same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1
and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2.
This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the
sign bits of the two operands.

Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions:

e Update the N and Z flags according to the result

e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

e Do not affect the V flag.
Examples

TST RO, #Ox3F8 ; Perform bitwi se AND of RO value to Ox3F8,
; APSR is updated but result is discarded

TEQEQ R10, RO ; Conditionally test if value in RLO is equal to
; value in RO, APSR is updated but result is discarded.

128 SAMGS55 [DATASHEET] /ltmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.16 UADD16 and UADDS8
Unsigned Add 16 and Unsigned Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UADD16 Performs two 16-bit unsigned integer additions.
UADDS8 Performs four 8-bit unsigned integer additions.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.
The UADD16 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UADD16 R1, RO ; Adds hal fwords in RO to corresponding hal fword of R1,
; Wwites to corresponding hal fword of Rl
UADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; Wwites to corresponding byte in R4.

Atmel SAMGS55 [DATASHEET] 129

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.17 UASX and USAX
Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UASX instruction:
1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.
4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:
1. Adds the bottom halfword of the first operand with the top halfword of the second operand.
2. Writes the unsigned result of the addition to the bottom halfword of the destination register.
3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UASX RO, R4, R5 ; Adds top halfword of R4 to bottom hal fword of R5 and
; Wwites to top hal fword of RO
; Subtracts bottom hal fword of R5 fromtop hal fword of RO
; and wites to bottom hal fword of RO

USAX R7, R3, R2 ; Subtracts top halfword of R2 frombottom hal fword of R3
; and wites to bottom hal fword of R7
; Adds top hal fword of R3 to bottom hal fword of R2 and
; Wites to top hal fword of R7.

130 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.18 UHADD16 and UHADDS8
Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UHADD16 Unsigned Halving Add 16.
UHADDS8 Unsigned Halving Add 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.
Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the
destination register:

The UHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.

The UHADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the byte result by one bit to the right, halving the data.
3. Writes the unsigned results in the corresponding byte in the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
UHADD16 R7, R3 ; Adds hal fwords in R7 to corresponding hal fword of R3
; and wites halved result to correspondi ng hal fword
; in R

UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; Wwites halved result to corresponding byte in R4.

Atmel SAMGS55 [DATASHEET] 131

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.19 UHASX and UHSAX

Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:
UHASX Add and Subtract with Exchange and Halving.
UHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the addition to the top halfword of the destination register.
Subtracts the top halfword of the second operand from the bottom highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination register.
The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

Writes the halfword result of the subtraction in the top halfword of the destination register.

Adds the bottom halfword of the first operand with the top halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the addition to the bottom halfword of the destination register.

S

a s~ b

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

Examples

UHASX R7, R4, R2 ; Adds top hal fword of R4 with bottom hal fword of R2
; and wites halved result to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R7 and wites halved result to bottom hal fword of R7

UHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 fromtop hal fword of
; R3 and wites halved result to top hal fword of RO
; Adds top halfword of R5 to bottom hal fword of R3 and
; wites halved result to bottom hal fword of RO.

132 SAMGS55 [DATASHEET] /ltmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.20 UHSUB16 and UHSUBS8
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
UHSUB16 Performs two unsigned 16-bit integer additions, halves the results,
and writes the results to the destination register.
UHSUBS8 Performs four unsigned 8-bit integer additions, halves the results, and
writes the results to the destination register.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The UHSUBL16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.
3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.
The UHSUBS instruction:
1. Subtracts each byte of second operand from the corresponding byte of the first operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UHSUB16 R1, RO ; Subtracts halfwords in RO from correspondi ng hal fword of
; RL and wites halved result to corresponding halfword in Rl
UHSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO and
; wites halved result to corresponding byte in R4.

Atmel SAMGS55 [DATASHEET] 133

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.21 SEL

Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the
values of the GE flags.

Syntax
SEL{<c>}{<g>} {<Rd>} <Rn>, <RnP
where:
c, g are standard assembler syntax fields.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

The SEL instruction:
1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second
operand register.

Restrictions

None.

Condition Flags

These instructions do not change the flags.

Examples
SADD16 RO, Rl1, R2 ; Set GE bits based on result
SEL RO, RO, R3 ; Select bytes fromRO or R3, based on GE
134 SAMGH55 [DATASHEET] /ltmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.22 USADS8
Unsigned Sum of Absolute Differences

Syntax
USAD8{cond}{Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

The USADS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
USAD8 R1, R4, RO ; Subtracts each byte in RO fromcorrespondi ng byte of R4
; adds the differences and wites to RL
USAD8 RO, R5 ; Subtracts bytes of R5 fromcorresponding byte in RO,
; adds the differences and wites to RO.

Atmel SAMGS55 [DATASHEET] 135

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.23 USADAS8
Unsigned Sum of Absolute Differences and Accumulate

Syntax
USADA8{cond}{Rd,} Rn, Rm Ra
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Ra is the register that contains the accumulation value.
Operation

The USADAS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
USADA8 R1, RO, R6 ; Subtracts bytes in RO from correspondi ng hal fword of Rl
; adds differences, adds value of R6, wites to Rl
USADA8 R4, RO, R5, R2 ; Subtracts bytes of R5 from corresponding byte in RO
: adds differences, adds value of R2 wites to R4.

136 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.5.24 USUB16 and USUB8
Unsigned Subtract 16 and Unsigned Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where
op is any of:
USUB16 Unsigned Subtract 16.
USUBS8 Unsigned Subtract 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of the first
operand register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.
The USUBS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Writes the unsigned byte result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
USUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword of Rl
and wites to corresponding hal fword in RIUSUB8 R4, RO, R5
; Subtracts bytes of R5 from corresponding byte in RO and
; Wwites to the corresponding byte in R4.

Atmel SAMGS55 [DATASHEET] 137

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.6 Multiply and Divide Instructions

The table below shows the multiply and divide instructions.

Table 13-21. Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result
MLS Multiply and Subtract, 32-bit result
MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX

Signed Multiply Accumulate Dual

SMLAL

Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)
SMLALD, SMLALDX Signed Multiply Accumulate Long Dual
SMLAWIBIT] Signed Multiply Accumulate (word by halfword)
SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX

Signed Dual Multiply Add

SMULIB,T] Signed Multiply (word by halfword)
SMMUL, SMMULR Signed Most Significant Word Multiply
SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT

Signed Multiply (word by halfword)

SMUSD, SMUSDX

Signed Dual Multiply Subtract

uDIVv Unsigned Divide

UMAAL Unsigned Multiply Accumulate Accumulate Long (32 x 32 + 32 + 32), 64-bit result
UMLAL Unsigned Multiply with Accumulate (32 x 32 + 64), 64-bit result

UMULL Unsigned Multiply (32 x 32), 64-bit result

138 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

13.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.

Syntax
MUL{ S}{cond} {Rd,} Rn
MLA{ cond} Rd, Rn, Rm
M.S{cond} Rd, Rn, Rm

Rm; Miltiply
Ra ; Miultiply with accunul ate
Ra ; Miultiply with subtract

where:

cond is an optional condition code, see “Conditional Execution”.

S is an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution”.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in
Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least
significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and
places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.
Restrictions
In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:
e Rd, Rn, and Rm must all be in the range RO to R7
e Rd must be the same as Rm
e The cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:
e Updates the N and Z flags according to the result
e Does not affect the C and V flags.

Examples
MJL R10, R2, RS ; Multiply, RLO = R2 x RS
M_A R10, R2, R1, R5 ; Multiply with accunulate, R1I0 = (R2 x Rl) + RS
MILS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MIULLT R2, R3, R2 ; Conditionally multiply, RR = R3 x R2
M.S R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)
/ItmeL SAMG55 [DATASHEET] 139

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.6.2 UMULL, UMAAL, UMLAL
Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMAAL Unsigned Long Multiply with Accumulate Accumulate.
UMLAL Unsigned Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution”.

RdHi, RdLo are the destination registers. For UMAAL, UMLAL and UMLAL they also hold
the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation
These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Writes the least significant 32 bits of the result in RdLo.
e Writes the most significant 32 bits of the result in RdHi.
The UMAAL instruction:
e Multiplies the two unsigned 32-bit integers in the first and second operands.
e Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
e Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
e Writes the top 32-bits of the result to RdHi.
e Writes the lower 32-bits of the result to RdLo.
The UMLAL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
e Writes the result back to RdHi and RdLo.
Restrictions
In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Multiplies R5 and R6, wites the top 32 bits to R4
; and the bottom 32 bits to RO
UMAAL R3, R6, R2, RY ; Miltiplies R2 and R7, adds R6, adds R3, wites the
; top 32 bits to R6, and the bottom 32 bits to R3
UMLAL R2, Rl, R3, R5 ; Miltiplies R5 and R3, adds R1: R2, wites to Rl: R2.
140 SAMGH55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.6.3 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax
op{ XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm Ra

where:
op is one of:
SMLA Signed Multiply Accumulate Long (halfwords).

X and Y specifies which half of the source registers Rn and Rm are used as the
first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used

SMLAW Signed Multiply Accumulate (word by halfword).

Y specifies which half of the source register Rm is used as the second multiply
operand.

If Y is T, then the top halfword, bits [31:16] of Rm is used.
If Y is B, then the bottom halfword, bits [15:0] of Rm is used.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
Operation
The SMALBB, SMLABT, SMLATB, SMLATT instructions:
e Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
e Adds the value in Ra to the resulting 32-bit product.
e Writes the result of the multiplication and addition in Rd.
The non-specified halfwords of the source registers are ignored.
The SMLAWB and SMLAWT instructions:
e Multiply the 32-bit signed values in Rn with:
— The top signed halfword of Rm, T instruction suffix.
— The bottom signed halfword of Rm, B instruction suffix.
e Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
e Writes the result of the multiplication and addition in Rd.
The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No
overflow can occur during the multiplication.

Restrictions

In these instructions, do not use SP and do not use PC.
Condition Flags

If an overflow is detected, the Q flag is set.

Atmel SAMGSS5 [DATASHEET] 141

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Examples
SMLABB R5, ; Multiplies bottom hal fwords of R6 and R4, adds
: RlL and wites to RS
; Multiplies top hal fword of R6 with bottom hal fword
; of R4, adds R1 and wites to RS
; Multiplies top hal fwords of R6 and R4, adds
: Rl and wites the sumto R5
; Multiplies bottomhal fword of R6 with top hal fword
; of R4, adds R1L and wites to R5
, R2 ; Multiplies bottomhal fword of R4 with top hal fword of
; R3, adds R2 and wites to R4
SMLAWB R10, R2, R5, R3 ; Miltiplies R2 with bottom hal fword of R5, adds
; RBtothe result and wites top 32-bits to R10
SMAW R10, R2, R1, R5 ; Miltiplies R2 with top hal fword of Rl, adds R5
; and wites top 32-bits to R10.

SMLATB RS,

:
R R R R

R6
R6
SMLATT R5, R6, R4,
SMLABT R5, R6

R3

SMLABT R4,

142 SAMGS5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.6.4 SMLAD

Signed Multiply Accumulate Long Dual

Syntax

op{X}{cond} Rd, Rn, Rm Ra ;

where:

op

cond
Rd
Rn
Rm
Ra

Operation

is one of:
SMLAD Signed Multiply Accumulate Dual.
SMLADX Signed Multiply Accumulate Dual Reverse.

X specifies which halfword of the source register Rn is used as the multiply
operand.

If X is omitted, the multiplications are bottom x bottom and top x top.

If X is present, the multiplications are bottom x top and top x bottom.

is an optional condition code, see “Conditional Execution”.

is the destination register.

is the first operand register holding the values to be multiplied.
the second operand register.

is the accumulate value.

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and
SMLADX instructions:

e If X is not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the
bottom signed halfword values in Rn with the bottom signed halfword of Rm.

e Orif X is present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and
the bottom signed halfword values in Rn with the top signed halfword of Rm.

Add both multiplication results to the signed 32-bit value in Ra.
e Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SMLAD RI10, R2, R, R5 ; Multiplies two halfword values in R2 with

; corresponding hal fwords in Rl, adds R5 and
; wites to R10

SMLALDX RO, R2, R4, R6 ; Miultiplies top halfword of R2 with bottom

Atmel

; halfword of R4, nultiplies bottomhal fword of R2
; with top halfword of R4, adds R6 and wites to
;. RO.

SAMGS55 [DATASHEET] 143

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate
Long Dual.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
op{ XY}{cond} RdLo, RdHi, Rn, Rm
op{X}{cond} RdLo, RdH , Rn, Rm

where:
op is one of:
MLAL Signed Multiply Accumulate Long.
SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).
X and Y specify which halfword of the source registers Rn and Rm are used as
the first and second multiply operand:
If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.
If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.
SMLALD Signed Multiply Accumulate Long Dual.
SMLALDX Signed Multiply Accumulate Long Dual Reversed.
If the X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution”.

RdHi, RdLo are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLA
LDX, they also hold the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation
The SMLAL instruction:
e Multiplies the two’s complement signed word values from Rn and Rm.
e Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:
e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
e Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The non-specified halfwords of the source registers are ignored.
The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement
signed 16-bit integers. These instructions:
e If X is not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the
bottom signed halfword values of Rn with the bottom signed halfword of Rm.
e Orif X is present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and
the bottom signed halfword values of Rn with the top signed halfword of Rm.

144 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit

product.

e Write the 64-bit product in RdLo and RdHi.

Restrictions
In these instructions:

e Do notuse SP and do not use PC.
e RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples
SMLAL R4, R5, R3, R8
SMLALBT R2, R1, R6, R7
SMLALTB R2, R1, R6, RY

SMLALD R6, R8, R5, Rl

SMLALDX R6, R8, R5, R1

Atmel

Miltiplies R3 and R8, adds R5: R4 and wites to
R5: R4

Mul tiplies bottomhal fword of R6 with top

hal fword of R7, sign extends to 32-bit, adds
R1:R2 and wites to RL: R2

Mil tiplies top halfword of R6 with bottom

hal fword of R7,sign extends to 32-bit, adds Rl:R2
and wites to RL: R2

Multiplies top halfwords in R5 and RL and bottom
hal fwords of R5 and R1l, adds R8:R6 and wites to
R8: R6

Miltiplies top halfword in R5 with bottom

hal fword of R1, and bottom hal fword of R5 with
top hal fword of Rl, adds R8:R6 and writes to

R8: R6.

SAMGS55 [DATASHEET] 145

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.6.6

146

SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual
Syntax
op{X}{cond} Rd, Rn, Rm Ra
where:
op is one of:
SMLSD Signed Multiply Subtract Dual.
SMLSDX Signed Multiply Subtract Dual Reversed.
SMLSLD Signed Multiply Subtract Long Dual.
SMLSLDX Signed Multiply Subtract Long Dual Reversed.
SMLAW Signed Multiply Accumulate (word by halfword).
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Ra is the register holding the accumulate value.
Operation

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This
instruction:

e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit halfword multiplications.
e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the signed accumulate value to the result of the subtraction.
e Writes the result of the addition to the destination register.
The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.
This instruction:
e Optionally rotates the halfwords of the second operand.
Performs two signed 16 x 16-bit halfword multiplications.
Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
Writes the 64-bit result of the addition to the RdHi and RdLo.

Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.

SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Examples
SM.SD RO,
SMLSDX R1,
SMLSLD R3,
SMLSLDX R3,
Atmel

R4,

R7

R7

Mil tiplies bottomhal fword of R4 with bottom

hal fword of R5, nultiplies top hal fword of R4
with top hal fword of R5, subtracts second from
first, adds R6, wites to RO

Mil tiplies bottomhal fword of R3 with top

hal fword of R2, nultiplies top hal fword of R3
with bottom hal fword of R2, subtracts second from
first, adds RO, wites to RL

Mil tiplies bottomhal fword of R6 with bottom

hal fword of R2, nultiplies top hal fword of R6
with top halfword of R2, subtracts second from
first, adds R6:R3, wites to R6:R3

Mul tiplies bottomhal fword of R6 with top

hal fword of R2, nultiplies top hal fword of R6
with bottom hal fword of R2, subtracts second from
first, adds R6:R3, wites to R6: R3.

SAMGS55 [DATASHEET] 147

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.6.7 SMMLA and SMMLS
Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax
op{R}{cond} Rd, R, Rm Ra
where:
op is one of:
SMMLA Signed Most Significant Word Multiply Accumulate.
SMMLS Signed Most Significant Word Multiply Subtract.
If the X is omitted, the multiplications are bottom x bottom and top x top.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second multiply operands.

Ra is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLA instruction:

e Multiplies the values in Rn and Rm.

e Optionally rounds the result by adding 0x80000000.

e Extracts the most significant 32 bits of the result.

e Adds the value of Ra to the signed extracted value.

e Writes the result of the addition in Rd.
The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLS instruction:

e Multiplies the values in Rn and Rm.

e Optionally rounds the result by adding 0x80000000.
e Extracts the most significant 32 bits of the result.
e Subtracts the extracted value of the result from the value in Ra.
e Writes the result of the subtraction in Rd.
Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the condition code flags.

148 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Examples
SWVWM.,A RO, R4,

8

Miltiplies R4 and R5, extracts top 32 bits, adds
; R6, truncates and wites to RO

R4 ; Miltiplies R2 and Rl, extracts top 32 bits, adds
; R4, rounds and wites to R6

R7 ; Miltiplies R6 and R2, extracts top 32 bits,

; subtracts R7, rounds and wites to R3

; Multiplies R6 and R3, extracts top 32 bits,

; subtracts R8, truncates and wites to R4.

SMMLAR R6, R2,

SMWLSR R3, RG,

8 B R B

SMMLS R4, R5,

B

13.6.6.8 SMMUL
Signed Most Significant Word Multiply

Syntax
op{R}{cond} Rd, Rn, Rm

where:

op is one of:

SMMUL Signed Most Significant Word Multiply.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The
SMMUL instruction:

e Multiplies the values from Rn and Rm.
e Optionally rounds the result, otherwise truncates the result.
e Writes the most significant signed 32 bits of the result in Rd.

Restrictions

In this instruction:
e do not use SP and do not use PC.

Condition Flags
This instruction does not affect the condition code flags.

Examples
SMULL RO, R4, R5 ; Miltiplies R4 and R5, truncates top 32 bits
; and wites to RO
SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
; and wites to R6.

Atmel SAMGS5 [DATASHEET] 149

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.6.9 SMUAD and SMUSD
Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax
op{X}{cond} Rd, Rn, Rm

where:
op is one of:
SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add Reversed.
SMUSD Signed Dual Multiply Subtract.
SMUSDX Signed Dual Multiply Subtract Reversed.
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each
operand. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Adds the two multiplication results together.

e Writes the result of the addition to the destination register.
The SMUSD instruction interprets the values from the first and second operands as two’s complement signed
integers. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.

e Writes the result of the subtraction to the destination register.

Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
Sets the Q flag if the addition overflows. The multiplications cannot overflow.

150 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Examples

SMUAD RO, R4, R5 ; Miltiplies bottomhal fword of R4 with the bottom
; halfword of R5, adds nultiplication of top hal fword
; of RA with top halfword of R5, wites to RO

SMUADX R3, R7, R4 ; Miltiplies bottomhal fword of R7 with top hal fword
; of R4, adds multiplication of top hal fword of R7
: with bottomhal fword of R4, wites to R3

SMUSD R3, R6, R2 ; Miltiplies bottomhalfword of R4 with bottom hal fword
; of R6, subtracts nmultiplication of top halfword of R6
; Wth top halfword of R3, wites to R3

SMUSDX R4, R5, R3 ; Miltiplies bottomhal fword of R5 with top hal fword of
; R3, subtracts nultiplication of top hal fwrd of R5
: with bottomhal fword of R3, wites to R4.

13.6.6.10 SMUL and SMULW

Signed Multiply (halfwords) and Signed Multiply (word by halfword)
Syntax

op{ XY}{cond} Rd, Rn, Rm

op{Y}{cond} Rd. Rn, Rm
For SMULXY only:
op is one of:

SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as
the first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0] of Rn is used.

If X is T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the bot
tom halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW({Y} Signed Multiply (word by halfword).

Y specifies which halfword of the source register Rm is used as the second multiply operand.
If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.
If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed
16-bit integers. These instructions:

e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

e Writes the 32-bit result of the multiplication in Rd.
The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

e Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

e Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Atmel SAMGS55 [DATASHEET] 151

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Restrictions

In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Examples
SMULBT RO, R4, R5 ; Miltiplies the bottomhal fword of R4 with the
; top halfword of R5, nultiplies results and
; wites to RO
SMULBB RO, R4, R5 ; Miltiplies the bottomhal fword of R4 with the
; bottom hal fword of R5, nultiplies results and
; wites to RO

SMULTT RO, R4, R5 ; Miltiplies the top halfword of R4 with the top
; halfword of R5, nultiplies results and wites
; to RO

SMULTB RO, R4, R5 ; Miltiplies the top halfword of R4 with the

; bottom hal fword of R5, nultiplies results and
; and wites to RO

SMULWI R4, R5, R3 ; Miltiplies R5 with the top hal fword of R3,
; extracts top 32 bits and wites to R4
SMULV\B R4, R5, R3 ; Miltiplies R5 with the bottom hal fword of R3,

; extracts top 32 bits and wites to R4.

152 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.6.11 UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit

result.
Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution”.

RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accumulating value.
Rn, Rm are registers holding the operands.
Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers,
adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to
RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the
result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result
back to RdHi and RdLo.

Restrictions
In these instructions:
e Do notuse SP and do not use PC
e RdHi and RdLo must be different registers.
Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

Atmel SAMGS55 [DATASHEET] 153

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.6.12 SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax
SDI V{cond} {Rd,} Rn, Rm
uUDI V{cond} {Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.
Rm is a register holding the divisor.
Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SDIV RO, R, R4 ; Signed divide, RO = R2/R4
UDIV R8, R8, Rl ; Unsigned divide, R8 = R8/Rl

154 SAMGS5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.7 Saturating Instructions
The table below shows the saturating instructions.

Table 13-22. Saturating Instructions

Mnemonic Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QSuB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange

QSAX Saturating Subtract and Add with Exchange

QDADD Saturating Double and Add

QDSUB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADDS8 Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange
UQSAX Unsigned Saturating Subtract and Add with Exchange
UQSUB16 Unsigned Saturating Subtract 16

UQSuUBS Unsigned Saturating Subtract 8

For signed n-bit saturation, this means that:
e If the value to be saturated is less than -2"2, the result returned is -2"*
e If the value to be saturated is greater than 2"-1, the result returned is 2"*-1
e Otherwise, the result returned is the same as the value to be saturated.
For unsigned n-bit saturation, this means that:
e Ifthe value to be saturated is less than 0, the result returned is 0
e If the value to be saturated is greater than 2"-1, the result returned is 2"-1
e Otherwise, the result returned is the same as the value to be saturated.
If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the

instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, the
MSR instruction must be used; see “MSR”.

To read the state of the Q flag, the MRS instruction must be used; see “MRS".

Atmel SAMG55 [DATASHEET] 155

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.7.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.
Syntax
op{cond} Rd, #n, Rm{, shift #s}
where:
op is one of;

SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1
to 32 for SSAT

n ranges from 0 to 31 for USAT.

Rm is the register containing the value to saturate.

shift #s is an optional shift applied to Rm before saturating. It must be one of the
following:

ASR #s where s is in the range 1 to 31.

LSL #s where s is in the range 0 to 31.

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range

2t <x <2y,

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 < x < 2"-1.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit val ue and
; wite it back to R7
USATNE RO, #7, RS ; Conditionally saturate value in R5 as an

; unsigned 7 bit value and wite it to RO.

156 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

13.6.7.2 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm

where:

op is one of;
SSAT16 Saturates a signed halfword value to a signed range.
USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two signed 16-bit halfwords to the destination register.
The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two unsigned halfwords in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT16 R7, #9, R2 ; Saturates the top and bottom hi ghwords of R2
; as 9-bit values, wites to correspondi ng hal fword
; of R7

USAT16NE RO, #13, R5 ; Conditionally saturates the top and bottom
; halfwords of R5 as 13-bit values, wites to
; correspondi ng hal fword of RO.

Atmel SAMGS55 [DATASHEET] 157

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.7.3 QADD and QSUB
Saturating Add and Saturating Subtract, signed.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:
op is one of:
QADD Saturating 32-bit add.
QADDS8 Saturating four 8-bit integer additions.
QADD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
QSUBS8 Saturating four 8-bit integer subtraction.
QSUB16 Saturating two 16-bit integer subtraction.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions add or subtract two, four or eight values from the first and second operands and then writes a
signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result to the signed
range -2"1 < x < 2"1-1, where x is given by the number of bits applied in the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the
QADD and QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. The 8-bit
and 16-bit QADD and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used; see “MSR”.

To read the state of the Q flag, the MRS instruction must be used; see “MRS".
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

158 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Examples

QADD16 R7, R4, R2 ; Adds hal fwords of R4 with correspondi ng hal fword of
; R2, saturates to 16 bits and wites to
; correspondi ng hal fword of R7

QADD8 R3, Rl, R6 ; Adds bytes of Rl to the correspondi ng bytes of R,
; saturates to 8 bits and wites to correspondi ng
; byte of R3

QSUBL6 R4, R2, R3 ; Subtracts hal fwords of R3 from correspondi ng
; hal fword of R2, saturates to 16 bits, wites to
; correspondi ng hal fword of R4

QsuBS8 R4, R2, R5 ; Subtracts bytes of R5 fromthe correspondi ng byte
; in R2, saturates to 8 bits, wites to corresponding
; byte of R4.

13.6.7.4 QASX and QSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax
op{cond} {Rd}, Rm Rn

where:
op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The QASX instruction;
1. Adds the top halfword of the source operand with the bottom halfword of the second operand.
2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range -2 <x <21,
where x equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range
-2 <x <2 — 1, where x equals 16, to the top halfword of the destination register.
The QSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the source operand with the top halfword of the second operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range
—215 <x <21 _ 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2%° <x < 21— 1,
where x equals 16, to the top halfword of the destination register.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

Atmel SAMGS55 [DATASHEET] 159

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom hal fword of R2,
; saturates to 16 bits, wites to top halfword of R7
; Subtracts top highword of R2 from bottom hal fword of
; R4, saturates to 16 bits and wites to bottom hal fword
; of R7

@SAX RO, R3, R5 ; Subtracts bottom hal fword of R5 fromtop hal fword of
; R3, saturates to 16 bits, wites to top halfword of RO
; Adds bottom halfword of R3 to top hal fword of R5,
; saturates to 16 bits, wites to bottom hal fword of RO.

160 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.7.5 QDADD and QDSUB
Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax
op{cond} {Rd}, Rm Rn

where:
op is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm, Rn are registers holding the first and second operands.
Operation

The QDADD instruction:
e Doubles the second operand value.
e Adds the result of the doubling to the signed saturated value in the first operand.
e Writes the result to the destination register.

The QDSUB instruction:
e Doubles the second operand value.
e Subtracts the doubled value from the signed saturated value in the first operand.
e Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer range —
231 < x < 231 1. If saturation occurs in either operation, it sets the Q flag in the APSR.

Restrictions

Do not use SP and do not use PC.

Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

Examples
QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
; saturates to 32 bits, wites to R7
QDsuB RO, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits

; fromR5, saturates to 32 bits, wites to RO.

Atmel SAMGS55 [DATASHEET] 161

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.7.6 UQASX and UQSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, unsigned.

Syntax
op{cond} {Rd}, Rm Rn

where:
type is one of:

UQASX Add and Subtract with Exchange and Saturate.

UQSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UQASX instruction;

1. Adds the bottom halfword of the source operand with the top halfword of the second operand.
2. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range
0 <x< 2% -1, where x equals 16, to the top halfword of the destination register.
4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 216 — 1, where
X equals 16, to the bottom halfword of the destination register.
The UQSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the first operand with the top halfword of the second operand.

3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 26 — 1, where
x equals 16, to the top halfword of the destination register.

4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 < x < 2® — 1, where x
equals 16, to the bottom halfword of the destination register.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

Examples
UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom hal fword of R2,
; saturates to 16 bits, wites to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R4, saturates to 16 bits, wites to bottom hal fword of R7
UXSAX RO, R3, R5 ; Subtracts bottom halfword of R5 fromtop hal fword of R3,
; saturates to 16 bits, wites to top hal fwrd of RO
; Adds bottom hal fword of R4 to top hal fword of R5
; saturates to 16 bits, wites to bottom hal fword of RO.

162 SAMGS55 [DATASHEET] /ltmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.7.7 UQADD and UQSUB
Saturating Add and Saturating Subtract Unsigned.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:
UQADDS8 Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UDSUBS8 Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the
destination register.
The UQADDZ16 instruction:
e Adds the respective top and bottom halfwords of the first and second operands.
e Saturates the result of the additions for each halfword in the destination register to the unsigned range
0<x< 2.1, where x is 16.
The UQADDS instruction:
e Adds each respective byte of the first and second operands.
e Saturates the result of the addition for each byte in the destination register to the unsigned range 0 < x < 28-
1, where x is 8.
The UQSUBL16 instruction:
e Subtracts both halfwords of the second operand from the respective halfwords of the first operand.
e Saturates the result of the differences in the destination register to the unsigned range 0 < x < 216-1, where x
is 16.
The UQSUBS instructions:
e Subtracts the respective bytes of the second operand from the respective bytes of the first operand.
e Saturates the results of the differences for each byte in the destination register to the unsigned range
0<x< 281, where x is 8.
Restrictions
Do not use SP and do not use PC.

Atmel SAMGS55 [DATASHEET] 163

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Condition Flags

These instructions do not affect the condition code flags.

Examples
UQADD16 R7, R4, R2 ; Adds halfwords in R4 to corresponding hal fword in R2,
; saturates to 16 bits, wites to corresponding hal fword of R7
UQADDS R4, R2, RS ; Adds bytes of R2 to corresponding byte of R5, saturates

; to 8 bits, wites to corresponding bytes of R4
UQsSuB16 R6, R3, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; in R3, saturates to 16 bits, wites to correspondi ng
; halfword in R6
uQsuUB8 Rl, R5, R6 ; Subtracts bytes in R6 from correspondi ng byte of R5,
; saturates to 8 bits, wites to corresponding byte of RIl.

164 SAMGS5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.8 Packing and Unpacking Instructions
The table below shows the instructions that operate on packing and unpacking data.

Table 13-23. Packing and Unpacking Instructions

Mnemonic Description

PKH Pack Halfword

SXTAB Extend 8 bits to 32 and add
SXTAB16 Dual extend 8 bits to 16 and add
SXTAH Extend 16 bits to 32 and add
SXTB Sign extend a byte

SXTB16 Dual extend 8 bits to 16 and add
SXTH Sign extend a halfword

UXTAB Extend 8 bits to 32 and add
UXTAB16 Dual extend 8 bits to 16 and add
UXTAH Extend 16 bits to 32 and add
UXTB Zero extend a byte

UXTB16 Dual zero extend 8 bits to 16 and add
UXTH Zero extend a halfword

Atmel SAMGS55 [DATASHEET] 165

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.8.1 PKHBT and PKHTB
Pack Halfword

Syntax
op{cond} {Rd}, Rn, Rm{, LSL #i mi}
op{cond} {Rd}, Rn, Rm{, ASR #i mi

where:
op is one of:
PKHBT Pack Halfword, bottom and top with shift.
PKHTB Pack Halfword, top and bottom with shift.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register
Rm is the second operand register holding the value to be optionally shifted.
imm is the shift length. The type of shift length depends on the instruction:
For PKHBT
LSL a left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB
ASR an arithmetic shift right with a shift length from 1 to 32,
a shift of 32-bits is encoded as 0b00000.
Operation

The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the destination
register.

2. If shifted, the shifted value of the second operand is written to the top halfword of the destination register.
The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the destination register.

2. If shifted, the shifted value of the second operand is written to the bottom halfword of the destination register.
Restrictions
Rd must not be SP and must not be PC.
Condition Flags
This instruction does not change the flags.

Examples
PKHBT R3, R4, R5 LSL #0 ; Wites bottom hal fword of R4 to bottom hal fword of
; R3, wites top halfword of R5, unshifted, to top
: hal fword of R3
PKHTB R4, RO, R2 ASR #1 ; Wites R2 shifted right by 1 bit to bottom hal fword
; of R4, and wites top halfword of RO to top
: hal fword of R4.

166 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.8.2 SXT and UXT
Sign extend and Zero extend.

Syntax
op{cond} {Rd,} Rm{, ROR #n}
op{cond} {Rd}, Rm{, ROR #n}

where:
op is one of:
SXTB Sign extends an 8-bit value to a 32-bit value.
SXTH Sign extends a 16-bit value to a 32-bit value.
SXTB16 Sign extends two 8-bit values to two 16-bit values.
UXTB Zero extends an 8-bit value to a 32-bit value.
UXTH Zero extends a 16-bit value to a 32-bit value.
UXTB16 Zero extends two 8-bit values to two 16-bit values.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
— SXTB extracts bits[7:0] and sign extends to 32 bits.
— UXTB extracts bhits[7:0] and zero extends to 32 bits.
— SXTH extracts bits[15:0] and sign extends to 32 bits.
— UXTH extracts bits[15:0] and zero extends to 32 bits.
— SXTB16 extracts bits[7:0] and sign extends to 16 bits,
and extracts bits [23:16] and sign extends to 16 bits.
— UXTB16 extracts bits[7:0] and zero extends to 16 bits,
and extracts bits [23:16] and zero extends to 16 bits.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the flags.

Examples
SXTH R4, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom hal fword of
; of result, sign extends to 32 bits and wites to R4
UXTB R3, R10 ; Extracts | owest byte of value in R10, zero extends, and
; Wwites to R3.

Atmel SAMGS55 [DATASHEET] 167

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.8.3 SXTA and UXTA
Signed and Unsigned Extend and Add

Syntax
op{cond} {Rd,} Rn, Rm{, ROR #n}
op{cond} {Rd,} Rn, Rm{, ROR #n}
where:
op is one of:
SXTAB Sign extends an 8-bit value to a 32-bit value and add.
SXTAH Sign extends a 16-bit value to a 32-bit value and add.
SXTAB16 Sign extends two 8-bit values to two 16-bit values and add.
UXTAB Zero extends an 8-bit value to a 32-bit value and add.
UXTAH Zero extends a 16-bit value to a 32-bit value and add.
UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the register holding the value to rotate and extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
— SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.
— UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.
— SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.
— UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.

— SXTABL16 extracts bits[7:0] from Rm and sign extends to 16 bits,
and extracts bits [23:16] from Rm and sign extends to 16 bits.

— UXTABL6 extracts bits[7:0] from Rm and zero extends to 16 bits,
and extracts bits [23:16] from Rm and zero extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes the result in
Rd.

Restrictions

Do not use SP and do not use PC.

168 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Condition Flags
These instructions do not affect the flags.

Examples
SXTAH R4, R8, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
; hal fword, sign extends to 32 bits, adds
; R8,and wites to R4
UXTAB R3, R4, R10 ; Extracts bottom byte of RLO and zero extends
; to 32 bits, adds R4, and wites to R3.

Atmel SAMGS55 [DATASHEET] 169

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.9 Bitfield Instructions

The table below shows the instructions that operate on adjacent sets of bits in registers or bitfields.

Table 13-24. Packing and Unpacking Instructions

Mnemonic Description

BFC Bit Field Clear

BFI Bit Field Insert

SBFX Signed Bit Field Extract
SXTB Sign extend a byte

SXTH Sign extend a halfword
UBFX Unsigned Bit Field Extract
UXTB Zero extend a byte

UXTH Zero extend a halfword

170 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.9.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax
BFC{cond} Rd, #lsb, #wi dth
BFI {cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-Isb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit
position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of RAto O
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of RO with
; bit O0to bit 11 from R2.

Atmel SAMGS55 [DATASHEET] 171

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.9.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax
SBFX{cond} Rd, Rn, #lsb, #wi dth
UBFX{ cond} Rd, Rn, #lsb, #width
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.
Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination
register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples

SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) fromRl and sign
; extend to 32 bits and then wite the result to RO.

UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from Rl1l and zero
: extend to 32 bits and then wite the result to RS8.

172 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.9.3 SXT and UXT
Sign extend and Zero extend.

Syntax
SXText end{cond} {Rd,} Rm{, ROR #n}
UXText end{cond} {Rd}, Rm {, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
— SXTB extracts bits[7:0] and sign extends to 32 bits.
— UXTB extracts bits[7:0] and zero extends to 32 bits.
— SXTH extracts bits[15:0] and sign extends to 32 bits.
— UXTH extracts bits[15:0] and zero extends to 32 bits.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the | ower
; hal fword of the result and then sign extend to
; 32 bits and wite the result to R4.

UXTB R3, R10 ; Extract |owest byte of the value in RLO and zero
; extend it, and wite the result to R3.

Atmel SAMGS55 [DATASHEET] 173

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.10 Branch and Control Instructions

The table below shows the branch and control instructions.

Table 13-25. Branch and Control Instructions

Mnemonic Description
B Branch
BL Branch with Link
BLX Branch indirect with Link
BX Branch indirect
CBNz Compare and Branch if Non Zero
cBz Compare and Branch if Zero
IT If-Then
TBB Table Branch Byte
TBH Table Branch Halfword
174 SAMGH55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.10.1 B, BL, BX, and BLX

Branch instructions.

Syntax
B{ cond} | abel
BL{cond} | abel
BX{cond} Rm
BLX{ cond} Rm
where:
B is branch (immediate).
BL is branch with link (immediate).
BX is branch indirect (register).
BLX is branch indirect with link (register).
cond is an optional condition code, see “Conditional Execution”.
label is a PC-relative expression. See “PC-relative Expressions”.
Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm
must be 1, but the address to branch to is created by changing bit[0] to O.
Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:
e The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
e The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch
instructions must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT".

The table below shows the ranges for the various branch instructions.

Table 13-26. Branch Ranges

Instruction Branch Range

B label -16 MB to +16 MB
Bcond label (outside IT block) -1 MBto +1 MB
Bcond label (inside IT block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

The .W suffix might be used to get the maximum branch range. See “Instruction Width Selection”.

Restrictions

The restrictions are:
e Do not use PC in the BLX instruction
e For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address
created by changing bit[0] to O
e When any of these instructions is inside an IT block, it must be the last instruction of the IT block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer
branch range when it is inside an IT block.

Atmel SAMGS55 [DATASHEET] 175

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Condition Flags
These instructions do not change the flags.

Examples

B | oopA ; Branch to | oopA

BLE ng ; Conditionally branch to |abel ng

B. W target ; Branch to target within 16MB range

BEQ tar get ; Conditionally branch to target

BEQ W target ; Conditionally branch to target within 1MB

BL funC ; Branch with link (Call) to function funC, return address

; stored in LR

BX LR ; Return from function call

BXNE RO ; Conditionally branch to address stored in RO

BLX RO ; Branch with link and exchange (Call) to a address stored in RO.
176 SAMGH55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.10.2 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax
CBZ Rn, | abel
CBNZ Rn, | abel
where:
Rn is the register holding the operand.
label is the branch destination.
Operation
Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.
CBZ Rn, label does not change condition flags but is otherwise equivalent to:
CwvP Rn, #0
BEQ | abel
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CwP Rn, #0
BNE | abel

Restrictions

The restrictions are:
e Rn must be in the range of RO to R7
e The branch destination must be within 4 to 130 bytes after the instruction
e These instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples
CcBz R5, target ; Forward branch if R5 is zero
CBNz RO, target ; Forward branch if RO is not zero

Atmel SAMG55 [DATASHEET] 177

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.10.3 IT

178

If-Then condition instruction.
Syntax
| T{x{y{z}}} cond
where:
X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in
the IT block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some
of them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT
block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their
syntax.

The assembler might be able to generate the required IT instructions for conditional instructions automatically, so
that the user does not have to write them. See the assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked
PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and
execution of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to
branch to an instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:
e T
e CBZand CBNZ
e CPSID and CPSIE.

Other restrictions when using an IT block are:

e A branch or any instruction that modifies the PC must either be outside an IT block or must be the last
instruction inside the IT block. These are:

— ADDPC, PC,Rm
— MOV PC,Rm
— B, BL,BX, BLX
— Any LDM, LDR, or POP instruction that writes to the PC
— TBBand TBH
e Do not branch to any instruction inside an IT block, except when returning from an exception handler

SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside
an IT block but has a larger branch range if it is inside one

e Each instruction inside the IT block must specify a condition code suffix that is either the same or logical
inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler
directives within them.

Condition Flags

This instruction does not change the flags.

Example

I TTE NE ; Next 3 instructions are conditional
ANDNE RO, RO, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional nove
CwP RO, #9 ; Convert RO hex value (0 to 15) into ASCl I

; (IOI_Igl, IAI_IFI)
I TE GT ; Next 2 instructions are conditional
ADDGT R1, RO, #55 ; Convert OxA ->'A
ADDLE R1, RO, #48 ; Convert 0Ox0 -> 'OQ'
1T GT ; 1T block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment Rl conditionally
ITTEE EQ ; Next 4 instructions are conditional
MOVEQ RO, RL ; Conditional nove
ADDEQ R2, R2, #10 ; Conditional add
ANDNE R3, R3, #1 ; Conditional AND
BNE. W dl oop ; Branch instruction can only be used in the |ast

; instruction of an IT bl ock
1T NE ; Next instruction is conditional
ADD RO, RO, R1 ; Syntax error: no condition code used in IT bl ock

SAMG55 [DATASHEET 179
Atmel :]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.10.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

Syntax
TBB [Rn, Rn
TBH [Rn, Rm LSL #1]
where:
Rn is the register containing the address of the table of branch lengths.
If Rn is PC, then the address of the table is the address of the byte immediately
following the TBB or TBH instruction.
Rm is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in Rm to form the right offset into the table.
Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword
offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch
offset is twice the unsigned value of the byte returned from the table. and for TBH the branch offset is twice the
unsigned value of the halfword returned from the table. The branch occurs to the address at that offset from the
address of the byte immediately after the TBB or TBH instruction.

Restrictions

The restrictions are:

e Rn must not be SP

e Rm must not be SP and must not be PC

e When any of these instructions is used inside an IT block, it must be the last instruction of the IT block.
Condition Flags

These instructions do not change the flags.

180 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Examples
ADR. W RO, BranchTabl e_Byte
TBB [RO, R1] ; RlLis the index, RO is the base address of the
; branch table
Casel
;an instruction sequence foll ows
Case2
;an instruction sequence foll ows
Case3

;an instruction sequence foll ows

BranchTabl e_Byte
DCB 0 ; Casel offset calculation
DCB ((Case2-Casel)/2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation

TBH [PC, R1, LSL #1] ; RLis the index, PCis used as base of the
; branch table
BranchTabl e_H

DCl ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCl ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
DCl ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA

;an instruction sequence follows

CaseB

;an instruction sequence follows

CaseC

;an instruction sequence follows

Atmel SAMGS55 [DATASHEET] 181

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11 Floating-point Instructions
The table below shows the floating-point instructions.

These instructions are only available if the FPU is included, and enabled, in the system. See “Enabling the FPU”
for information about enabling the floating-point unit.

Table 13-27. Floating-point Instructions

Mnemonic | Description
VABS Floating-point Absolute
VADD Floating-point Add
VCMP Compare two floating-point registers, or one floating-point register and zero
VCMPE Compa_re two floating-point registers, or one floating-point register and zero with Invalid
Operation check
VCVT Convert between floating-point and integer
VCVT Convert between floating-point and fixed point
VCVTR Convert between floating-point and integer with rounding
VCVTB Converts half-precision value to single-precision
VCVTT Converts single-precision register to half-precision
VDIV Floating-point Divide
VEMA Floating-point Fused Multiply Accumulate
VENMA Floating-point Fused Negate Multiply Accumulate
VEMS Floating-point Fused Multiply Subtract
VFNMS Floating-point Fused Negate Multiply Subtract
VLDM Load Multiple extension registers
VLDR Loads an extension register from memory
VLMA Floating-point Multiply Accumulate
VLMS Floating-point Multiply Subtract
VMOV Floating-point Move Immediate
VMOV Floating-point Move Register
VMOV Copy ARM core register to single precision
VMOV Copy 2 ARM core registers to 2 single precision
VMOV Copies between ARM core register to scalar
VMOV Copies between Scalar to ARM core register
VMRS Move to ARM core register from floating-point System Register
VMSR Move to floating-point System Register from ARM Core register
VMUL Multiply floating-point
VNEG Floating-point negate
VNMLA Floating-point multiply and add
VNMLS Floating-point multiply and subtract
VNMUL Floating-point multiply
VPOP Pop extension registers
182 SAMGH55 [DATASHEET] AtmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Table 13-27. Floating-point Instructions (Continued)

Mnemonic | Description

VPUSH Push extension registers

VSQRT Floating-point square root

VSTM Store Multiple extension registers
VSTR Stores an extension register to memory
VSUB Floating-point Subtract

SAMGS55 [DATASHEET] 183

A t ' I IeL Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.1 VABS
Floating-point Absolute.

Syntax
VABS{ cond}. F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd, Sm are the destination floating-point value and the operand floating-point value.
Operation

This instruction:
1. Takes the absolute value of the operand floating-point register.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

The floating-point instruction clears the sign bit.

Examples
VABS. F32 S4, S6

184 SAMGS5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.2 VADD
Floating-point Add

Syntax
VADD{ cond}. F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd, is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:
1. Adds the values in the two floating-point operand registers.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

This instruction does not change the flags.

Examples
VADD. F32 S4, S6, S7

Atmel SAMGS55 [DATASHEET] 185

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.3 VCMP, VCMPE
Compares two floating-point registers, or one floating-point register and zero.

Syntax
VCWP{ E} {cond}. F32 Sd, Sm
VCWP{ E} {cond}. F32 Sd, #0.0

where:

cond is an optional condition code, see “Conditional Execution”.

E If present, any NaN operand causes an Invalid Operation exception.
Otherwise, only a signaling NaN causes the exception.

Sd is the floating-point operand to compare.

Sm is the floating-point operand that is compared with.

Operation

This instruction:
1. Compares:
— Two floating-point registers.
— One floating-point register and zero.
2. Writes the result to the FPSCR flags.
Restrictions
This instruction can optionally raise an Invalid Operation exception if either operand is any type of NaN. It always raises
an Invalid Operation exception if either operand is a signaling NaN.
Condition Flags
When this instruction writes the result to the FPSCR flags, the values are normally transferred to the ARM flags by a
subsequent VMRS instruction, see “VMRS".

Examples
VCMP. F32 4, #0.0
VCWVP. F32 S4, S2

186 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.4 VCVT, VCVTR between Floating-point and Integer
Converts a value in a register from floating-point to a 32-bit integer.

Syntax
VCVT{R}{cond}. Tm F32 Sd, Sm
VCVT{cond}. F32. Tm Sd, Sm

where:

R If R is specified, the operation uses the rounding mode specified by the FPSCR.
If R is omitted, the operation uses the Round towards Zero rounding mode.

cond is an optional condition code, see “Conditional Execution”.

Tm is the data type for the operand. It must be one of:

S32 signed 32- U32 unsigned 32-bit value.

bit value.

Sd, Sm are the destination register and the operand register.

Operation

These instructions:
1. Either
— Convert a value in a register from floating-point value to a 32-bit integer.
— Convert from a 32-bit integer to floating-point value.
2. Place the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode, but can optionally
use the rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 187

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.5 VCVT between Floating-point and Fixed-point
Converts a value in a register from floating-point to and from fixed-point.

Syntax
VCVT{cond}. Td. F32 Sd, Sd, #fbits
VCVT{cond}. F32. Td Sd, Sd, #fbits

where:
cond is an optional condition code, see “Conditional Execution”.
Td is the data type for the fixed-point number. It must be one of:
S16 signed 16-bit value.
Ul6 unsigned 16-bit value.
S32 signed 32-bit value.
U32 unsigned 32-bit value.
Sd is the destination register and the operand register.
fbits is the number of fraction bits in the fixed-point number:
If Td is S16 or U16, fbits must be in the range 0-16.
If Td is S32 or U32, fbits must be in the range 1-32.
Operation

These instructions:
1. Either
— Converts a value in a register from floating-point to fixed-point.
— Converts a value in a register from fixed-point to floating-point.
2. Places the result in a second register.

The floating-point values are single-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the low-
order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register width.
Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-
point operation uses the Round to Nearest rounding mode.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

188 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.6 VCVTB, VCVTT
Converts between a half-precision value and a single-precision value.

Syntax
VCVT{y}{cond}. F32. F16 Sd, Sm
VCVT{y}{cond}. F16. F32 Sd, Sm

where:

y Specifies which half of the operand register Sm or destination register Sd is used for the
operand or destination:
- If y is B, then the bottom half, bits [15:0], of Sm or Sd is used.
- If y is T, then the top half, bits [31:16], of Sm or Sd is used.

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination register.

Sm is the operand register.

Operation

This instruction with the.F16.32 suffix:

1. Converts the half-precision value in the top or bottom half of a single-precision. register to single-
precision.

2. Writes the result to a single-precision register.
This instruction with the.F32.F16 suffix:

1. Converts the value in a single-precision register to half-precision.

2. Writes the result into the top or bottom half of a single-precision register, preserving the other half of the
target register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 189

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.7 VDIV
Divides floating-point values.

Syntax
VDI V{cond}. F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination register.
Sn, Sm are the operand registers.
Operation

This instruction:
1. Divides one floating-point value by another floating-point value.
2. Writes the result to the floating-point destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

190 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.8 VFMA, VFMS
Floating-point Fused Multiply Accumulate and Subtract.

Syntax
VFMA{ cond}. F32 {Sd,} Sn, Sm
VFM5{ cond}. F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFMA instruction:

1. Multiplies the floating-point values in the operand registers.
2. Accumulates the results into the destination register.

The result of the multiply is not rounded before the accumulation.

The VFMS instruction:
1. Negates the first operand register.
2. Multiplies the floating-point values of the first and second operand registers.
3. Adds the products to the destination register.
4. Places the results in the destination register.

The result of the multiply is not rounded before the addition.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 191

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.9 VFENMA, VFNMS
Floating-point Fused Negate Multiply Accumulate and Subtract.

Syntax
VFNMA{ cond}. F32 {Sd,} Sn, Sm
VFNM3{ cond}. F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFNMA instruction:
1. Negates the first floating-point operand register.
2. Multiplies the first floating-point operand with second floating-point operand.
3. Adds the negation of the floating -point destination register to the product
4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.
The VENMS instruction:

1. Multiplies the first floating-point operand with second floating-point operand.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Places the result in the destination register.

The result of the multiply is not rounded before the addition.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

192 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.10 VLDM
Floating-point Load Multiple

Syntax
VLDM node} {cond}{. si ze} Rn{!}, Ilist

where:

mode is the addressing mode:
- 1A Increment After. The consecutive addresses start at the address specified in Rn.
-DB Decrement Before. The consecutive addresses end just before the
address specified in Rn.

cond is an optional condition code, see “Conditional Execution”.

size is an optional data size specifier.

Rn is the base register. The SP can be used

! is the command to the instruction to write a modified value back to Rn. This is
required if mode == DB, and is optional if mode == IA.

list is the list of extension registers to be loaded, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and surrounded by
brackets.

Operation

This instruction loads:
e Multiple extension registers from consecutive memory locations using an address from an ARM core register
as the base address.
Restrictions

The restrictions are:
e If size is present, it must be equal to the size in bits, 32 or 64, of the registers in list.

e Forthe base address, the SP can be used.
In the ARM instruction set, if | is not specified the PC can be used.

e list must contain at least one register. If it contains doubleword registers, it must not contain more than 16
registers.

e If using the Decrement Before addressing mode, the write back flag, !, must be appended to the base
register specification.

Condition Flags
These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 193

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.11 VLDR
Loads a single extension register from memory

Syntax
VLDR{cond}{. 64} Dd, [Rn{# mmi]
VLDR{ cond}{. 64} Dd, | abel
VLDR{cond}{. 64} Dd, [PC, #i mi]
VLDR{cond}{.32} Sd, [Rn {, #i mmi]
VLDR{ cond}{. 32} Sd, | abel
VLDR{cond}{. 32} Sd, [PC, #i mmi

where:
cond is an optional condition code, see “Conditional Execution”.
64, 32 are the optional data size specifiers.
Dd is the destination register for a doubleword load.
Sd is the destination register for a singleword load.
Rn is the base register. The SP can be used.
imm is the + or - immediate offset used to form the address.
Permitted address values are multiples of 4 in the range 0 to 1020.
label is the label of the literal data item to be loaded.
Operation

This instruction:

e Loads a single extension register from memory, using a base address from an ARM core register, with an
optional offset.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

194 SAMGS5S5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.12 VLMA, VLMS
Multiplies two floating-point values, and accumulates or subtracts the results.

Syntax
VLMA{ cond}. F32 Sd, Sn, Sm
VLM5{ cond}. F32 Sd, Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.

Sn, Sm are the operand floating-point values.

Operation

The floating-point Multiply Accumulate instruction:
1. Multiplies two floating-point values.
2. Adds the results to the destination floating-point value.
The floating-point Multiply Subtract instruction:
1. Multiplies two floating-point values.
2. Subtracts the products from the destination floating-point value.
3. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 195

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.13 VMOV Immediate
Move floating-point Immediate

Syntax
VMOV{ cond}. F32 Sd, #imm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the branch destination.
imm is a floating-point constant.
Operation

This instruction copies a constant value to a floating-point register.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

196 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.14 VMOV Register
Copies the contents of one register to another.

Syntax
VMOV{ cond}. F64 Dd, Dm
VMOV{ cond}. F32 Sd, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Dd is the destination register, for a doubleword operation.

Dm is the source register, for a doubleword operation.

Sd is the destination register, for a singleword operation.

Sm is the source register, for a singleword operation.
Operation

This instruction copies the contents of one floating-point register to another.
Restrictions

There are no restrictions

Condition Flags

These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 197

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.15 VMOV Scalar to ARM Core Register
Transfers one word of a doubleword floating-point register to an ARM core register.

Syntax
VMOV{ cond} Rt, Dn[Xx]

where:
cond is an optional condition code, see “Conditional Execution”.
Rt is the destination ARM core register.
Dn is the 64-bit doubleword register.
X Specifies which half of the doubleword register to use:

- If x is 0, use lower half of doubleword register

- If x is 1, use upper half of doubleword register.
Operation

This instruction transfers:
e One word from the upper or lower half of a doubleword floating-point register to an ARM core register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

198 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.16 VMOV ARM Core Register to Single Precision
Transfers a single-precision register to and from an ARM core register.

Syntax
VMOV{cond} Sn, Rt
VMOV{cond} Rt, Sn
where:
cond is an optional condition code, see “Conditional Execution”.
Sn is the single-precision floating-point register.
Rt is the ARM core register.
Operation

This instruction transfers:
e The contents of a single-precision register to an ARM core register.
e The contents of an ARM core register to a single-precision register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 199

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.17 VMOV Two ARM Core Registers to Two Single Precision
Transfers two consecutively numbered single-precision registers to and from two ARM core registers.

Syntax
VMMV{cond} Sm Snml, R, Rt2
VMM{cond} Rt, Rt2, Sm Sm

where:
cond is an optional condition code, see “Conditional Execution”.
Sm is the first single-precision register.
Sml is the second single-precision register.
This is the next single-precision register after Sm.
Rt is the ARM core register that Sm is transferred to or from.
Rt2 is the The ARM core register that Sm1 is transferred to or from.
Operation

This instruction transfers:
e The contents of two consecutively numbered single-precision registers to two ARM core registers.
e The contents of two ARM core registers to a pair of single-precision registers.
Restrictions
e The restrictions are:
e The floating-point registers must be contiguous, one after the other.
e The ARM core registers do not have to be contiguous.
e Rtcannot be PC or SP.

Condition Flags
These instructions do not change the flags.

200 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.18 VMOV ARM Core Register to Scalar
Transfers one word to a floating-point register from an ARM core register.

Syntax
VMOV cond}{. 32} Dd[x], Rt
where:
cond is an optional condition code, see “Conditional Execution”.
32 is an optional data size specifier.
Dd[x] is the destination, where [x] defines which half of the doubleword is transferred,
as follows:
If x is 0, the lower half is extracted
If x is 1, the upper half is extracted.
Rt is the source ARM core register.
Operation

This instruction transfers one word to the upper or lower half of a doubleword floating-point register from an ARM
core register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 201

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.19 VMRS
Move to ARM Core register from floating-point System Register.

Syntax
VMRS{cond} Rt, FPSCR
VMRS{ cond} APSR nzcv, FPSCR

where:
cond is an optional condition code, see “Conditional Execution”.
Rt is the destination ARM core register. This register can be R0O-R14.

APSR_nzcv transfers floating-point flags to the APSR flags.
Operation

This instruction performs one of the following actions:
e Copies the value of the FPSCR to a general-purpose register.
e Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions optionally change the flags: N, Z, C, V

202 SAMGS55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.20 VMSR

Move to floating-point System Register from ARM Core register.

Syntax
VMBR{ cond} FPSCR Rt
where:
cond is an optional condition code, see “Conditional Execution”.
Rt is the general-purpose register to be transferred to the FPSCR.
Operation

This instruction moves the value of a general-purpose register to the FPSCR. See “Floating-point Status Control
Register” for more information.

Restrictions

The restrictions are:
e Rt cannot be PC or SP.

Condition Flags
This instruction updates the FPSCR.

Atmel SAMGS55 [DATASHEET] 203

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.21 VMUL
Floating-point Multiply.

Syntax
VMJL{cond}. F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:

1. Multiplies two floating-point values.
2. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

204 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.22 VNEG
Floating-point Negate.

Syntax
VNEE cond}. F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sm is the operand floating-point value.
Operation

This instruction:

1. Negates a floating-point value.
2. Places the results in a second floating-point register.

The floating-point instruction inverts the sign bit.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 205

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.23 VNMLA, VNMLS, VNMUL
Floating-point multiply with negation followed by add or subtract.

Syntax
VNMLA{ cond}. F32 Sd, Sn, Sm
VNMLS{ cond}. F32 Sd, Sn, Sm
VNMUL{ cond}. F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point register.

Sn, Sm are the operand floating-point registers.

Operation

The VNMLA instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the negation of the product.
3. Writes the result back to the destination register.
The VNMLS instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Writes the result back to the destination register.
The VNMUL instruction:

1. Multiplies together two floating-point register values.
2. Writes the negation of the result to the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

206 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.24 VPOP
Floating-point extension register Pop.

Syntax
VPOP{ cond}{. si ze} Iist

where:

cond is an optional condition code, see “Conditional Execution”.

size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

list is the list of extension registers to be loaded, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and surrounded by
brackets.

Operation

This instruction loads multiple consecutive extension registers from the stack.
Restrictions

The list must contain at least one register, and not more than sixteen registers.
Condition Flags

These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 207

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.25 VPUSH
Floating-point extension register Push.

Syntax
VPUSH{ cond}{. si ze} |ist
where:
cond is an optional condition code, see “Conditional Execution”.
size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.
list is a list of the extension registers to be stored, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and sur
rounded by brackets.
Operation

This instruction:
e Stores multiple consecutive extension registers to the stack.

Restrictions

The restrictions are:
e list must contain at least one register, and not more than sixteen.

Condition Flags
These instructions do not change the flags.

208 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.26 VSQRT
Floating-point Square Root.

Syntax
VSQRT{ cond}. F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sm is the operand floating-point value.
Operation

This instruction:
e Calculates the square root of the value in a floating-point register.
e Writes the result to another floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 209

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.27 VSTM
Floating-point Store Multiple.

Syntax
VSTM node} {cond}{. si ze} Rn{!}, Ilist

where:

mode is the addressing mode:
- 1A Increment After. The consecutive addresses start at the address
specified in Rn.
This is the default and can be omitted.
- DB Decrement Before. The consecutive addresses end just before the
address specified in Rn.

cond is an optional condition code, see “Conditional Execution”.

size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

Rn is the base register. The SP can be used

! is the function that causes the instruction to write a modified value back to Rn.
Required if mode == DB.

list is a list of the extension registers to be stored, as a list of consecutively
numbered doubleword or singleword registers, separated by commas and
surrounded by brackets.

Operation

This instruction:

e Stores multiple extension registers to consecutive memory locations using a base address from an ARM
core register.

Restrictions

The restrictions are:

e list must contain at least one register.
If it contains doubleword registers it must not contain more than 16 registers.

e Use of the PC as Rn is deprecated.
Condition Flags
These instructions do not change the flags.

210 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.28 VSTR
Floating-point Store.

Syntax
VSTR{cond}{.32} Sd, [Rn{, #imi]
VSTR{cond}{. 64} Dd, [Rn{, #i mi]

where

cond is an optional condition code, see “Conditional Execution”.

32, 64 are the optional data size specifiers.

Sd is the source register for a singleword store.

Dd is the source register for a doubleword store.

Rn is the base register. The SP can be used.

imm is the + or - immediate offset used to form the address. Values are multiples of 4
in the range 0-1020. imm can be omitted, meaning an offset of +0.

Operation

This instruction:

e Stores a single extension register to memory, using an address from an ARM core register, with an optional
offset, defined in imm.

Restrictions

The restrictions are:
e The use of PC for Rn is deprecated.

Condition Flags
These instructions do not change the flags.

Atmel SAMGS55 [DATASHEET] 211

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.11.29 VSUB
Floating-point Subtract.

Syntax
VSUB{ cond}. F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point value.
Operation

This instruction:
1. Subtracts one floating-point value from another floating-point value.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

212 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.12 Miscellaneous Instructions

The table below shows the remaining Cortex-M4 instructions.

Table 13-28. Miscellaneous Instructions

Mnemonic Description
BKPT Breakpoint
CPSID Change Processor State, Disable Interrupts
CPSIE Change Processor State, Enable Interrupts
DMB Data Memory Barrier
DSB Data Synchronization Barrier
ISB Instruction Synchronization Barrier
MRS Move from special register to register
MSR Move from register to special register
NOP No Operation
SEV Send Event
SsvC Supervisor Call
WFE Wait For Event
WFI Wait For Interrupt
/ItmeL SAMG55 [DATASHEET] 213
Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.12.1 BKPT

Breakpoint.
Syntax
BKPT #i nm
where:
imm is an expression evaluating to an integer in the range 0—255 (8-bit value).
Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system
state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

Condition Flags
This instruction does not change the flags.

Examples
BKPT OxAB ; Breakpoint with i medi ate val ue set to OxAB (debugger can
; extract the imediate value by locating it using the PC)

Note: ARM does not recommend the use of the BKPT instruction with an immediate value set to 0xAB for any purpose other
than Semi-hosting.

13.6.12.2 CPS
Change Processor State.

Syntax
CPSef fect iflags
where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
i Set or clear PRIMASK.
f Set or clear FAULTMASK.
Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception Mask Registers” for more
information about these registers.

Restrictions

The restrictions are:
e Use CPS only from privileged software, it has no effect if used in unprivileged software
e CPS cannot be conditional and so must not be used inside an IT block.

214 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Condition Flags
This instruction does not change the condition flags.

Examples

CPSIDi ; Disable interrupts and configurable fault handlers (set PRI MASK)
CPSIDf ; Disable interrupts and all fault handlers (set FAULTMASK)

CPSIE i ; Enable interrupts and configurable fault handl ers (clear PRI MASK)

CPSIE f ; Enable interrupts and fault handl ers (cl ear FAULTMASK)

13.6.12.3 DMB
Data Memory Barrier.

Syntax
DVB{ cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,
before the DMB instruction are completed before any explicit memory accesses that appear, in program order,
after the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access
memory.

Condition Flags
This instruction does not change the flags.

Examples
DMB ; Data Menmory Barrier

Atmel SAMGS55 [DATASHEET] 215

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.12.4 DSB
Data Synchronization Barrier.

Syntax
DSB{ cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program
order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory
accesses before it complete.

Condition Flags
This instruction does not change the flags.

Examples
DSB ; Data Synchronisation Barrier

13.6.12.5 ISB

Instruction Synchronization Barrier.

Syntax
| SB{ cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

Condition Flags
This instruction does not change the flags.

Examples
ISB ; Instruction Synchronisation Barrier

216 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.12.6 MRS
Move the contents of a special register to a general-purpose register.

Syntax
MRS{ cond} Rd, spec_reg
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to
clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be saved, including
relevant PSR contents. Similarly, the state of the process being swapped in must also be restored. These
operations use MRS in the state-saving instruction sequence and MSR in the state-restoring instruction sequence.
Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.

See “MSR”.

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples
MRS RO, PRIMASK ; Read PRI MASK value and wite it to RO

13.6.12.7 MSR
Move the contents of a general-purpose register into the specified special register.

Syntax
MBR{ cond} spec_reg, Rn
where:
cond is an optional condition code, see “Conditional Execution”.
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Atmel SAMGS55 [DATASHEET] 217

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR. See “Application Program Status Register”. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
Rn is non-zero and the current BASEPRI value is 0
Rn is non-zero and less than the current BASEPRI value.

See “MRS”".

Restrictions

Rn must not be SP and must not be PC.

Condition Flags

This instruction updates the flags explicitly based on the value in Rn.

Examples
MSR CONTROL, Rl ; Read Rl value and wite it to the CONTROL register

13.6.12.8 NOP
No Operation.

Syntax
NOP{ cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the
pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
Condition Flags
This instruction does not change the flags.

Examples
NOP ; No operation

218 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.12.9 SEV

Send Event.
Syntax
SEV{ cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It
also sets the local event register to 1, see “Power Management”,

Condition Flags
This instruction does not change the flags.

Examples
SEV ; Send Event

13.6.12.10 SVC
Supervisor Call.

Syntax
SVC{ cond} #i nm
where:
cond is an optional condition code, see “Conditional Execution”.
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service
is being requested.

Condition Flags
This instruction does not change the flags.

Examples
SVC 0x32 ; Supervisor Call (SVC handler can extract the i medi ate val ue
; by locating it via the stacked PC)

Atmel SAMGS55 [DATASHEET] 219

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.6.12.11 WFE
Wait For Event.

Syntax
WFE{ cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

WEFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

e An exception, unless masked by the exception mask registers or the current priority level

e An exception enters the Pending state, if SEVONPEND in the System Control Register is set
e A Debug Entry request, if Debug is enabled
[J

An event signaled by a peripheral or another processor in a multiprocessor system using the SEV
instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.
For more information, see “Power Management”.

Condition Flags

This instruction does not change the flags.

Examples
WFE ; Wait for event

13.6.12.12 WFI
Wait for Interrupt.

Syntax
WFI { cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

WFI is a hint instruction that suspends execution until one of the following events occurs:
e An exception
e A Debug Entry request, regardless of whether Debug is enabled.

Condition Flags
This instruction does not change the flags.

Examples
WFl ; Wait for interrupt

220 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.7 Cortex-M4 Core Peripherals

13.7.1 Peripherals

e Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low
latency interrupt processing. See Section 13.8 "Nested Vectored Interrupt Controller (NVIC)".

e System Control Block (SCB)
The System Control Block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions. See Section 13.9 "System Control Block (SCB)".

e System Timer (SysTick)
The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System
(RTOS) tick timer or as a simple counter. See Section 13.10 "System Timer (SysTick)”".

e Memory Protection Unit (MPU)
The Memory Protection Unit (MPU) improves system reliability by defining the memory attributes for different

memory regions. It provides up to eight different regions, and an optional predefined background region.
See Section 13.11 "Memory Protection Unit (MPU)”.

e Floating-point Unit (FPU)
The Floating-point Unit (FPU) provides IEEE754-compliant operations on single-precision, 32-bit, floating-
point values. See Section 13.12 "Floating Point Unit (FPU)".

13.7.2 Address Map

The address map of the Private peripheral bus (PPB) is given in the following table.

Table 13-29. Core Peripheral Register Regions

Address Core Peripheral
O0xEOOOE008-0xEO00EQOF System Control Block
OXEOOOE010-0xEOOOEOQ1F System Timer
OXEOOOE100-0xEOOOE4EF Nested Vectored Interrupt Controller
O0XEOOOEDO00-0XEOOOED3F System control block
OXEOOOED90-0xEOOOEDBS Memory Protection Unit
OXEOOOEF00-OXEOOOEF03 Nested Vectored Interrupt Controller
OxXEOOOEF30-0xEOOOEF44 Floating-point Unit

In register descriptions:
e The required privilege gives the privilege level required to access the register, as follows:
— Privileged: Only privileged software can access the register.
— Unprivileged: Both unprivileged and privileged software can access the register.

Atmel SAMGS55 [DATASHEET] 221

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.8 Nested Vectored Interrupt Controller (NVIC)

This section describes the NVIC and the registers it uses. The NVIC supports:
e Upto 50 interrupts

e A programmable priority level of 015 for each interrupt. A higher level corresponds to a lower priority, so
level 0 is the highest interrupt priority.

Level detection of interrupt signals

Dynamic reprioritization of interrupts

Grouping of priority values into group priority and subpriority fields
Interrupt tail-chaining

e An external Non-maskable interrupt (NMI)

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling.

13.8.1 Level-sensitive Interrupts

The processor supports level-sensitive interrupts. A level-sensitive interrupt is held asserted until the peripheral
deasserts the interrupt signal. Typically, this happens because the ISR accesses the peripheral, causing it to clear
the interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see “Hardware
and Software Control of Interrupts”). For a level-sensitive interrupt, if the signal is not deasserted before the
processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR
again. This means that the peripheral can hold the interrupt signal asserted until it no longer requires servicing.

13.8.1.1 Hardware and Software Control of Interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:
e The NVIC detects that the interrupt signal is HIGH and the interrupt is not active
e The NVIC detects a rising edge on the interrupt signal
e A software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending
Registers”, or to the NVIC_STIR to make an interrupt pending, see “Software Trigger Interrupt Register”.
A pending interrupt remains pending until one of the following:

e The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active.
Then:

— For alevel-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the
interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might
cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to
inactive.

e Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not
change. Otherwise, the state of the interrupt changes to inactive.

222 SAMGS55 [DATASHEET] /ltmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.8.2 NVIC Design Hints and Tips

Ensure that the software uses correctly aligned register accesses. The processor does not support unaligned
accesses to NVIC registers. See the individual register descriptions for the supported access sizes.

A interrupt can enter a pending state even if it is disabled. Disabling an interrupt only prevents the processor from
taking that interrupt.

Before programming SCB_VTOR to relocate the vector table, ensure that the vector table entries of the new vector
table are set up for fault handlers, NMI and all enabled exception like interrupts. For more information, see the
“Vector Table Offset Register”.

13.8.2.1 NVIC Programming Hints

The software uses the CPSIE | and CPSID | instructions to enable and disable the interrupts. The CMSIS provides
the following intrinsic functions for these instructions:

void __disable_irg(void) // Disable Interrupts
void __enable_irq(void) // Enable Interrupts
In addition, the CMSIS provides a nhumber of functions for NVIC control, including:

Table 13-30. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnablelRQ(IRQnN_t IRQN) Enable IRQn

void NVIC_DisablelRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendinglRQ (IRQn_t IRQN) Return true (IRQ-Number) if IRQn is pending
void NVIC_SetPendingIRQ (IRQn_t IRQnN) Set IRQn pending

void NVIC_ClearPendinglRQ (IRQn_t IRQN) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn) Return the IRQ number of the active interrupt
void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

The input parameter IRQn is the IRQ number. For more information about these functions, see the CMSIS
documentation.
To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:

e The Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit
integers, so that:

— The array ISERJ[0] to ISER[1] corresponds to the registers ISERO-ISER1
— The array ICER[0] to ICER[1] corresponds to the registers ICERO-ICERL1
— The array ISPRJ[0] to ISPR[1] corresponds to the registers ISPRO-ISPR1
— The array ICPR[0] to ICPR[1] corresponds to the registers ICPRO-ICPR1
— The array IABRJ[0] to IABR[1] corresponds to the registers IABRO-IABR1

e The Interrupt Priority Registers (IPRO-IPR12) provide an 8-bit priority field for each interrupt and each
register holds four priority fields.

Atmel SAMGS55 [DATASHEET] 223

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. Table 13-31
shows how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS variables
that have one bit per interrupt.

Table 13-31. Mapping of Interrupts

CMSIS Array Elements™
Interrupts | Set-enable Clear-enable Set-pending Clear-pending Active Bit
0-31 ISER[0] ICERJ[0] ISPR[0] ICPRI[0] IABR[0]
32-50 ISER[1] ICER[1] ISPR[1] ICPR[1] IABR[1]
Note: 1. Each array element corresponds to a single NVIC register, for example the ICER[0] element corresponds to the
ICERO.
e oo o o k53D 0 Atmel

13.8.3 Nested Vectored Interrupt Controller (NVIC) User Interface

Table 13-32. Nested Vectored Interrupt Controller (NVIC) Register Mapping

Offset Register Name Access Reset

OxEOOOE100 Interrupt Set-enable Register 0 NVIC_ISERO Read/Write 0x00000000
OXEOOOE11C Interrupt Set-enable Register 7 NVIC_ISER7 Read/Write 0x00000000
0XEOOOE180 Interrupt Clear-enable Register 0 NVIC_ICERO Read/Write 0x00000000
OXEOOOE19C Interrupt Clear-enable Register 7 NVIC_ICER7 Read/Write 0x00000000
0XEOO0E200 Interrupt Set-pending Register 0 NVIC_ISPRO Read/Write 0x00000000
OXEOOOE21C Interrupt Set-pending Register 7 NVIC_ISPR7 Read/Write 0x00000000
0XEOOOE280 Interrupt Clear-pending Register 0 NVIC_ICPRO Read/Write 0x00000000
OXEOOOE29C Interrupt Clear-pending Register 7 NVIC_ICPR7 Read/Write 0x00000000
OXEOOOE300 Interrupt Active Bit Register O NVIC_IABRO Read/Write 0x00000000
OXEOOOE31C Interrupt Active Bit Register 7 NVIC_IABR7 Read/Write 0x00000000
OXEOOOE400 Interrupt Priority Register O NVIC_IPRO Read/Write 0x00000000
OXEOOOE42C Interrupt Priority Register 12 NVIC_IPR12 Read/Write 0x00000000
OxEOOOEF00 Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000

Atmel

SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

225

13.8.3.1 Interrupt Set-enable Registers

Name: NVIC_ISERX [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| SETENA |
23 22 21 20 19 18 17 16

| SETENA |
15 14 13 12 11 10 9 8

| SETENA |
7 6 5 4 3 2 1 0

| SETENA |

These registers enable interrupts and show which interrupts are enabled.

» SETENA: Interrupt Set-enable
Write:

0: No effect.

1: Enables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

Notes: 1. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.

2. If aninterrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, the NVIC never activates
the interrupt, regardless of its priority.

226 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.8.3.2 Interrupt Clear-enable Registers

Name: NVIC_ICERX [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| CLRENA |
23 22 21 20 19 18 17 16

| CLRENA |
15 14 13 12 11 10 9 8

| CLRENA |
7 6 5 4 3 2 1 0

| CLRENA |

These registers disable interrupts, and show which interrupts are enabled.

* CLRENA: Interrupt Clear-enable
Write:

0: No effect.

1: Disables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

Atmel SAMGS55 [DATASHEET] 227

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.8.3.3 Interrupt Set-pending Registers

Name: NVIC_ISPRx [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

These registers force interrupts into the pending state, and show which interrupts are pending.

» SETPEND: Interrupt Set-pending
Write:

0: No effect.

1: Changes the interrupt state to pending.
Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Notes: 1. Writing a 1 to an ISPR bit corresponding to an interrupt that is pending has no effect.
2. Wiriting a 1 to an ISPR bit corresponding to a disabled interrupt sets the state of that interrupt to pending.

228 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.8.34 Interrupt Clear-pending Registers

Name: NVIC_ICPRXx [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| CLRPEND |
23 22 21 20 19 18 17 16

| CLRPEND |
15 14 13 12 11 10 9 8

| CLRPEND |
7 6 5 4 3 2 1 0

| CLRPEND |

These registers remove the pending state from interrupts, and show which interrupts are pending.

* CLRPEND: Interrupt Clear-pending

Write:

0: No effect.

1: Removes the pending state from an interrupt.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Note: Writing a 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

Atmel SAMGS55 [DATASHEET] 229

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.8.3.5 Interrupt Active Bit Registers

Name: NVIC_IABRXx [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

These registers indicate which interrupts are active.

» ACTIVE: Interrupt Active Flags
0: Interrupt is not active.

1: Interrupt is active.
Note: A bit reads as one if the status of the corresponding interrupt is active, or active and pending.

230 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.8.3.6 Interrupt Priority Registers

Name: NVIC_IPRx [x=0..12]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| PRI3 |
23 22 21 20 19 18 17 16

| PRI2 |
15 14 13 12 11 10 9 8

| PRI1 |
7 6 5 4 3 2 1 0

| PRIO |

The NVIC_IPRO-NVIC_IPR12 registers provide a 8-bit priority field for each interrupt. These registers are byte-accessible.
Each register holds four priority fields that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[49].

* PRI3: Priority (4m+3)
Priority, Byte Offset 3, refers to register bits [31:24].

* PRI2: Priority (4m+2)
Priority, Byte Offset 2, refers to register bits [23:16].

* PRI1: Priority (4m+1)
Priority, Byte Offset 1, refers to register bits [15:8].

e PRIO: Priority (4m)

Priority, Byte Offset 0, refers to register bits [7:0].

Notes: 1. Each priority field holds a priority value, 0—15. The lower the value, the greater the priority of the corresponding interrupt.
The processor implements only bits[7:4] of each field; bits[3:0] read as zero and ignore writes.

2. For more information about the IP[0] to IP[49] interrupt priority array, that provides the software view of the interrupt
priorities, see Table 13-30 “CMSIS Functions for NVIC Control” .

3. The corresponding IPR number n is given by n = m DIV 4.
4. The byte offset of the required Priority field in this register is m MOD 4.

Atmel SAMGS55 [DATASHEET] 231

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.8.3.7 Software Trigger Interrupt Register
Name: NVIC_STIR
Access: Write-only
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | - | - - | - - - INTID |
7 6 5 4 3 2 1 0
| INTID |
Write to this register to generate an interrupt from the software.
e INTID: Interrupt ID
Interrupt ID of the interrupt to trigger, in the range 0-239. For example, a value of 0x03 specifies interrupt IRQ3.
232 SAMG55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9

System Control Block (SCB)

The System Control Block (SCB) provides system implementation information, and system control. This includes

configuration, control, and reporting of the system exceptions.

Ensure that the software uses aligned accesses of the correct size to access the system control block registers:
e Except for the SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it must use aligned word accesses
e Forthe SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it can use byte or aligned halfword or word

accesses.

The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or SCB_BFAR value.
2. Read the MMARVALID bit in the MMFSR subregister, or the BFARVALID bit in the BFSR subregister. The
SCB_MMFAR or SCB_BFAR address is valid only if this bit is 1.

The software must follow this sequence because another higher priority exception might change the SCB_ MMFAR
or SCB_BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault
might change the SCB_MMFAR or SCB_BFAR value.

Atmel SAMGS55 [DATASHEET] 233

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1 System Control Block (SCB) User Interface

Table 13-33. System Control Block (SCB) Register Mapping

Offset Register Name Access Reset
OxEOOOE008 Auxiliary Control Register SCB_ACTLR Read/Write 0x00000000
OxXEOOOEDOO CPUID Base Register SCB_CPUID Read-only 0x410FC240
OXEOOOEDO4 Interrupt Control and State Register SCB_ICSR Read/Write® 0x00000000
OXEOOOEDO08 Vector Table Offset Register SCB_VTOR Read/Write 0x00000000
OXEOOOEDOC Application Interrupt and Reset Control Register SCB_AIRCR Read/Write 0xFA050000
OXEOOOED10 System Control Register SCB_SCR Read/Write 0x00000000
OXEOOOED14 Configuration and Control Register SCB_CCR Read/Write 0x00000200
OxXEOOOED18 System Handler Priority Register 1 SCB_SHPR1 Read/Write 0x00000000
OXEOOOED1C System Handler Priority Register 2 SCB_SHPR2 Read/Write 0x00000000
OXEOOOED20 System Handler Priority Register 3 SCB_SHPR3 Read/Write 0x00000000
OXEOOOED24 System Handler Control and State Register SCB_SHCSR Read/Write 0x00000000
OxEOOOED28 Configurable Fault Status Register SCB_CFSR® Read/Write 0x00000000
OXEOOOED2C HardFault Status Register SCB_HFSR Read/Write 0x00000000
OxEOOOED34 MemManage Fault Address Register SCB_MMFAR Read/Write Unknown
OxEOOOED38 BusFault Address Register SCB_BFAR Read/Write Unknown
OXEOOOED3C Auxiliary Fault Status Register SCB_AFSR Read/Write 0x00000000

Notes: 1. See the register description for more information.

2. This register contains the subregisters: “MMFSR: Memory Management Fault Status Subregister” (OXEOOOED28 - 8 bits),
“BFSR: Bus Fault Status Subregister” (OXEOOOEDZ29 - 8 bits), “UFSR: Usage Fault Status Subregister” (OXEOOOED2A - 16

bits).

234 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

13.9.1.1 Auxiliary Control Register

Name: SCB_ACTLR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | — | DISOOFP | DISFPCA |
7 6 5 4 3 2 1 0

| — | - | — | - | - | DISFOLD | DISDEFWBUFl DISMCYCINT |

The SCB_ACTLR provides disable bits for the following processor functions:
« IT folding
» Write buffer use for accesses to the default memory map
« Interruption of multi-cycle instructions.

By default, this register is set to provide optimum performance from the Cortex-M4 processor, and does not normally
require modification.

» DISOOFP: Disable Out Of Order Floating Point
Disables floating point instructions that complete out of order with respect to integer instructions.

e DISFPCA: Disable FPCA
Disables an automatic update of CONTROL.FPCA.

» DISFOLD: Disable Folding

When set to 1, disables the IT folding.

Note: In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT instruction.
This behavior is called IT folding, and it improves the performance. However, IT folding can cause jitter in looping. If a task must
avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable the IT folding.

 DISDEFWBUF: Disable Default Write Buffer

When set to 1, it disables the write buffer use during default memory map accesses. This causes BusFault to be precise
but decreases the performance, as any store to memory must complete before the processor can execute the next
instruction.

This bit only affects write buffers implemented in the Cortex-M4 processor.

* DISMCYCINT: Disable Multiple Cycle Interruption

When set to 1, it disables the interruption of load multiple and store multiple instructions. This increases the interrupt
latency of the processor, as any LDM or STM must complete before the processor can stack the current state and enter the
interrupt handler.

Atmel SAMGS55 [DATASHEET] 235

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.2 CPUID Base Register

Name: SCB_CPUID

Access: Read/Write
31 30 29 28 27 26 25 24

| Implementer |
23 22 21 20 19 18 17 16

| Variant Constant |
15 14 13 12 11 10 9 8

| PartNo |
7 6 5 4 3 2 1 0

| PartNo | Revision |

The SCB_CPUID register contains the processor part number, version, and implementation information.

* Implementer: Implementer Code
0x41: ARM.

» Variant: Variant Number
It is the r value in the rnpn product revision identifier:
0x0: Revision 0.

» Constant: Reads as OxF
Reads as OxF.

e PartNo: Part Number of the Processor
0xC24 = Cortex-M4.

* Revision: Revision Number
It is the p value in the rnpn product revision identifier:
0x0: Patch 0.

236 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.3 Interrupt Control and State Register

Name: SCB_ICSR

Access: Read/Write
31 30 29 28 27 26 25 24

| NMIPENDSET | - PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR - |
23 22 21 20 19 18 17 16

| - | ISRPENDING VECTPENDING |
15 14 13 12 11 10 9 8

| VECTPENDING RETTOBASE - - VECTACTIVE |
7 6 5 4 3 2 1 0

| VECTACTIVE |

The SCB_ICSR provides a set-pending bit for the Non-Maskable Interrupt (NMI) exception, and set-pending and clear-
pending bits for the PendSV and SysTick exceptions.

It indicates:
» The exception number of the exception being processed, and whether there are preempted active exceptions,
» The exception number of the highest priority pending exception, and whether any interrupts are pending.

« NMIPENDSET: NMI Set-pending

Write:

PendSV set-pending bit.

Write:

0: No effect.

1: Changes NMI exception state to pending.
Read:

0: NMI exception is not pending.

1: NMI exception is pending.

As NMI is the highest-priority exception, the processor normally enters the NMI exception handler as soon as it registers a
write of 1 to this bit. Entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if
the NMI signal is reasserted while the processor is executing that handler.

* PENDSVSET: PendSV Set-pending

Write:

0: No effect.

1: Changes PendSV exception state to pending.

Read:

0: PendSV exception is not pending.

1: PendSV exception is pending.

Writing a 1 to this bit is the only way to set the PendSV exception state to pending.

Atmel SAMGS55 [DATASHEET] 237

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

 PENDSVCLR: PendSV Clear-pending
Write:
0: No effect.

1: Removes the pending state from the PendSV exception.

 PENDSTSET: SysTick Exception Set-pending
Write:

0: No effect.

1: Changes SysTick exception state to pending.
Read:

0: SysTick exception is not pending.

1: SysTick exception is pending.

» PENDSTCLR: SysTick Exception Clear-pending

Write:

0: No effect.

1: Removes the pending state from the SysTick exception.
This bit is Write-only. On a register read, its value is Unknown.

* ISRPENDING: Interrupt Pending Flag (Excluding NMI and Faults)
0: Interrupt not pending.
1: Interrupt pending.

» VECTPENDING: Exception Number of the Highest Priority Pending Enabled Exception
0: No pending exceptions.
Nonzero: The exception humber of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

« RETTOBASE: Preempted Active Exceptions Present or Not
0: There are preempted active exceptions to execute.
1: There are no active exceptions, or the currently-executing exception is the only active exception.

¢ VECTACTIVE: Active Exception Number Contained
0: Thread mode.

Nonzero: The exception number of the currently active exception. The value is the same as IPSR bits [8:0]. See “Interrupt
Program Status Register”.

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register”.
Note: When the user writes to the SCB_ICSR, the effect is unpredictable if:

- Writing a 1 to the PENDSVSET bit and writing a 1 to the PENDSVCLR bit
- Writing a 1 to the PENDSTSET bit and writing a 1 to the PENDSTCLR bit.

238 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.4 Vector Table Offset Register

Name: SCB_VTOR

Access: Read/Write
31 30 29 28 27 26 25 24

| TBLOFF |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

[TBLOFF | - I - I - I - I - I - I - |

The SCB_VTOR indicates the offset of the vector table base address from memory address 0x00000000.

* TBLOFF: Vector Table Base Offset

It contains bits [29:7] of the offset of the table base from the bottom of the memory map.
Bit [29] determines whether the vector table is in the code or SRAM memory region:

0: Code.

1: SRAM.

It is sometimes called the TBLBASE bit.

Note: When setting TBLOFF, the offset must be aligned to the number of exception entries in the vector table. Configure the next
statement to give the information required for your implementation; the statement reminds the user of how to determine the
alignment requirement. The minimum alignment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the
alignment by rounding up to the next power of two. For example, if 21 interrupts are required, the alignment must be on a 64-word
boundary because the required table size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

Atmel SAMGS55 [DATASHEET] 239

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.5 Application Interrupt and Reset Control Register

Name: SCB_AIRCR

Access: Read/Write
31 30 29 28 27 26 25 24

| VECTKEYSTAT/VECTKEY |
23 22 21 20 19 18 17 16

| VECTKEYSTAT/VECTKEY |
15 14 13 12 11 10 9 8

| ENDIANNESS | - | - | - | - | PRIGROUP |
7 6 5 4 3 2 1 0

| _ | _ | — | - | — | SYSRESETREQ |VECTCLRACTIVE| VECTRESET |

The SCB_AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset
control of the system. To write to this register, write OX5FA to the VECTKEY field, otherwise the processor ignores the
write.

 VECTKEYSTAT: Register Key (Read)
Reads as 0xFAO05.

* VECTKEY: Register Key (Write)
Writes Ox5FA to VECTKEY, otherwise the write is ignored.

« ENDIANNESS: Data Endianness
O: Little-endian.

1: Big-endian.

* PRIGROUP: Interrupt Priority Grouping

This field determines the split of group priority from subpriority. It shows the position of the binary point that splits the PRI_n
fields in the Interrupt Priority Registers into separate group priority and subpriority fields. The table below shows how the
PRIGROUP value controls this split.

Interrupt Priority Level Value, PRI_N[7:0] Number of
PRIGROUP Binary Point® Group Priority Bits | Subpriority Bits Group Priorities Subpriorities
0b000 DXXXXXXX.Y [7:1] None 128 2
0b001 bXXXXXX.yy [7:2] [4:0] 64 4
0b010 bxxxxx.yyy [7:3] [4:0] 32 8
0b011 bxxxx.yyyy [7:4] [4:0] 16 16
0b100 bxxx.yyyyy [7:5] [4:0] 8 32
0b101 bxx.yyyyyy [7:6] [5:0] 4 64
Ob110 bx.yyyyyyy [7] [6:0] 2 128
Ob111 b.yyyyyyy None [7:0] 1 256

Note: 1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.
Determining preemption of an exception uses only the group priority field.

240 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e SYSRESETREQ: System Reset Request
0: No system reset request.
1: Asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components except for debug. This bit reads as 0.

* VECTCLRACTIVE: Reserved for Debug use
This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

 VECTRESET: Reserved for Debug use
This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

Atmel SAMGSS5 [DATASHEET] 241

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.6 System Control Register

Name: SCB_SCR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| SEVONPEND | - | SLEEPDEEP |SLEEPONEXIT| - |

 SEVONPEND: Send Event on Pending Bit
0: Only enabled interrupts or events can wake up the processor; disabled interrupts are excluded.

1: Enabled events and all interrupts, including disabled interrupts, can wake up the processor.

When an event or an interrupt enters the pending state, the event signal wakes up the processor from WFE. If the proces-
sor is not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

» SLEEPDEEP: Sleep or Deep Sleep

Controls whether the processor uses sleep or deep sleep as its low power mode:
0: Sleep.

1: Deep sleep.

* SLEEPONEXIT: Sleep-on-exit

Indicates sleep-on-exit when returning from the Handler mode to the Thread mode:

0: Do not sleep when returning to Thread mode.

1: Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt-driven application to avoid returning to an empty main application.

242 SAMGSS5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.7 Configuration and Control Register

Name: SCB_CCR

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 1 10 9 8

| - | - | - | - | - | - [STKALIGN | BFHFNMIGN |
7 6 5 4 3 2 1 0
- - - DIV.0_TRP |UNALIGN_TRP - USERSETMPENDNONBAS§THRDE

The SCB_CCR controls the entry to the Thread mode and enables the handlers for NMI, hard fault and faults escalated by
FAULTMASK to ignore BusFaults. It also enables the division by zero and unaligned access trapping, and the access to
the NVIC_STIR by unprivileged software (see “Software Trigger Interrupt Register”).

» STKALIGN: Stack Alignment

Indicates the stack alignment on exception entry:
0: 4-byte aligned.

1: 8-byte aligned.

On exception entry, the processor uses bit [9] of the stacked PSR to indicate the stack alignment. On return from the
exception, it uses this stacked bit to restore the correct stack alignment.

 BFHFNMIGN: Bus Faults Ignored

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0: Data bus faults caused by load and store instructions cause a lock-up.
1. Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

» DIV_O_TRP: Division by Zero Trap

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0:
0: Do not trap divide by 0.

1: Trap divide by O.

When this bit is set to 0, a divide by zero returns a quotient of 0.

Atmel SAMGS5 [DATASHEET] 243

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

*« UNALIGN_TRP: Unaligned Access Trap

Enables unaligned access traps:

0: Do not trap unaligned halfword and word accesses.

1: Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

¢ USERSETMPEND: Unprivileged Software Access

Enables unprivileged software access to the NVIC_STIR, see “Software Trigger Interrupt Register”:
0: Disable.

1: Enable.

e NONBASETHRDENA: Thread Mode Enable
Indicates how the processor enters Thread mode:
0: The processor can enter the Thread mode only when no exception is active.

1: The processor can enter the Thread mode from any level under the control of an EXC_RETURN value, see “Exception
Return”.

244 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.8 System Handler Priority Registers

The SCB_SHPR1-SCB_SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have configurable pri-

ority. They are byte-accessible.

The system fault handlers and the priority field and register for each handler are:

Table 13-34. System Fault Handler Priority Fields

Handler Field Register Description

Memory management fault (MemManage) PRI_4

Bus fault (BusFault) PRI_5 System Handler Priority Register 1

Usage fault (UsageFault) PRI_6

Svcall PRI_11 System Handler Priority Register 2

PendSV PRI_14 . .
System Handler Priority Register 3

SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:4] of each field, and bits [3:0] read as zero and

ignore writes.

Atmel

SAMGS55 [DATASHEET] 245

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.9 System Handler Priority Register 1

Name: SCB_SHPR1
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| PRI_6 |
15 14 13 12 11 10 9 8
| PRI 5 |
7 6 5 4 3 2 1 0
| PRI_4 |
* PRIL_6: Priority
Priority of system handler 6, UsageFault.
* PRIL_5: Priority
Priority of system handler 5, BusFault.
e PRI_4: Priority
Priority of system handler 4, MemManage.
246 SAMG55 [DATASHEET]
Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15 A t m eL

13.9.1.10 System Handler Priority Register 2

Name: SCB_SHPR2

Access: Read/Write
31 30 29 28 27 26 25 24

| PRI_11 |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - I - |
* PRI_11: Priority
Priority of system handler 11, SVCall.

Atmel SAMGSS5 [DATASHEET] 247

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.11 System Handler Priority Register 3

Name: SCB_SHPR3

Access: Read/Write
31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - I - |
* PRI_15: Priority
Priority of system handler 15, SysTick exception.

* PRI_14: Priority
Priority of system handler 14, PendSV.

248 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.12 System Handler Control and State Register

Name: SCB_SHCSR

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - [USGFAULTENA|BUSFAULTENAMEMFAULTENA
15 14 13 12 11 10 9 8

SVCALLPENDED BUSFAEE'-)TPEND MEMFAEE%TPEND USGFAE’E';TPEND SYSTICKACT | PENDSVACT - MONITORACT
7 6 5 4 3 2 1 0

[SVCALLACT | - | - | - [USGFAULTACT] - [BUSFAULTACT [MEMFAULTACT|

The SHCSR enables the system handlers, and indicates the pending status of the bus fault, memory management fault,
and SVC exceptions; it also indicates the active status of the system handlers.

» USGFAULTENA: Usage Fault Enable
0: Disables the exception.
1: Enables the exception.

» BUSFAULTENA: Bus Fault Enable
0: Disables the exception.
1: Enables the exception.

* MEMFAULTENA: Memory Management Fault Enable
0: Disables the exception.
1: Enables the exception.

» SVCALLPENDED: SVC Call Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

e BUSFAULTPENDED: Bus Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

Atmel SAMGS5 [DATASHEET] 249

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

+ MEMFAULTPENDED: Memory Management Fault Exception Pending
Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

* USGFAULTPENDED: Usage Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

e SYSTICKACT: SysTick Exception Active
Read:
0: The exception is not active.

1: The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.
- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the stacked content
can cause the processor to generate a fault exception. Ensure that the software writing to this register retains and subsequently
restores the current active status.
- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a read-modify-write
procedure to ensure that only the required bit is changed.

« PENDSVACT: PendSV Exception Active

0: The exception is not active.

1: The exception is active.

* MONITORACT: Debug Monitor Active
0: Debug monitor is not active.
1: Debug monitor is active.

« SVCALLACT: SVC Call Active
0: SVC call is not active.
1: SVC call is active.

 USGFAULTACT: Usage Fault Exception Active
0: Usage fault exception is not active.
1: Usage fault exception is active.

 BUSFAULTACT: Bus Fault Exception Active
0: Bus fault exception is not active.
1: Bus fault exception is active.

« MEMFAULTACT: Memory Management Fault Exception Active
0: Memory management fault exception is not active.

1: Memory management fault exception is active.

250 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

If the user disables a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system exceptions. An OS kernel can write to
the active bits to perform a context switch that changes the current exception type.

Atmel SAMGS55 [DATASHEET] 251

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.13 Configurable Fault Status Register

Name: SCB_CFSR

Access: Read/Write
31 30 29 28 27 26 25 24

| —_ | — | — | - | - | - | DIVBYZERO | UNALIGNED |
23 22 21 20 19 18 17 16

| - | - | - | - | NOCP | INVPC | INVSTATE | UNDEFINSTR |
15 14 13 12 11 10 9 8

| BFARVALID | - | LSPERR | STKERR | UNSTKERR |IMPRECISERR| PRECISERR | IBUSERR |
7 6 5 4 3 2 1 0

[MMARVALID | - | mLsPERR | MSTKERR [MUNSTKERR | - [DACCVIOL [TACCVIOL |

* IACCVIOL: Instruction Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No instruction access violation fault.

1: The processor attempted an instruction fetch from a location that does not permit execution.
This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not
written a fault address to the SCB_MMFAR.

» DACCVIOL: Data Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No data access violation fault.

1: The processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded
the SCB_MMFAR with the address of the attempted access.

e MUNSTKERR: Memory Manager Fault on Unstacking for a Return From Exception
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No unstacking fault.

1. Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-
sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a
fault address to the SCB_MMFAR.

» MSTKERR: Memory Manager Fault on Stacking for Exception Entry
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No stacking fault.

1: Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to SCB_ MMFAR.

252 SAMGS55 [DATASHEET] /ltmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

* MLSPERR: MemManage During Lazy State Preservation

This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No MemManage fault occurred during the floating-point lazy state preservation.
1: A MemManage fault occurred during the floating-point lazy state preservation.

* MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: The value in SCB_MMFAR is not a valid fault address.

1: SCB_MMFAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_MMFAR
value has been overwritten.

* IBUSERR: Instruction Bus Error

This is part of “BFSR: Bus Fault Status Subregister”.
0: No instruction bus error.

1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

* PRECISERR: Precise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister”.
0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused
the fault.

When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR.

* IMPRECISERR: Imprecise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister”.
0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
that both this bit and one of the precise fault status bits are set to 1.

 UNSTKERR: Bus Fault on Unstacking for a Return From Exception
This is part of “BFSR: Bus Fault Status Subregister”.

0: No unstacking fault.

1: Unstack for an exception return has caused one or more bus faults.

Atmel SAMGS55 [DATASHEET] 253

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write
a fault address to the BFAR.

* STKERR: Bus Fault on Stacking for Exception Entry

This is part of “BFSR: Bus Fault Status Subregister”.

0: No stacking fault.

1: Stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-
rect. The processor does not write a fault address to the SCB_BFAR.

* LSPERR: Bus Error During Lazy Floating-point State Preservation
This is part of “BFSR: Bus Fault Status Subregister”.

0: No bus fault occurred during floating-point lazy state preservation

1: A bus fault occurred during floating-point lazy state preservation.

 BFARVALID: Bus Fault Address Register (BFAR) Valid flag
This is part of “BFSR: Bus Fault Status Subregister”.

0: The value in SCB_BFAR is not a valid fault address.

1: SCB_BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This
prevents problems if returning to a stacked active bus fault handler whose SCB_BFAR value has been overwritten.

» UNDEFINSTR: Undefined Instruction Usage Fault

This is part of “UFSR: Usage Fault Status Subregister”.

0: No undefined instruction usage fault.

1: The processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.
An undefined instruction is an instruction that the processor cannot decode.

¢ INVSTATE: Invalid State Usage Fault

This is part of “UFSR: Usage Fault Status Subregister”.

0: No invalid state usage fault.

1: The processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal
use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

254 SAMGS5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

* INVPC: Invalid PC Load Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”. It is caused by an invalid PC load by EXC_RETURN:
0: No invalid PC load usage fault.

1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

« NOCP: No Coprocessor Usage Fault

This is part of “UFSR: Usage Fault Status Subregister”. The processor does not support coprocessor instructions:
0: No usage fault caused by attempting to access a coprocessor.

1: The processor has attempted to access a coprocessor.

¢« UNALIGNED: Unaligned Access Usage Fault

This is part of “UFSR: Usage Fault Status Subregister”.

0: No unaligned access fault, or unaligned access trapping not enabled.
1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the SCB_CCR to 1. See “Configuration and
Control Register”. Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of
UNALIGN_TRP.

« DIVBYZERO: Divide by Zero Usage Fault

This is part of “UFSR: Usage Fault Status Subregister”.

0: No divide by zero fault, or divide by zero trapping not enabled.

1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero. Enable trapping of divide by zero by setting the DIV_0_TRP bit in the SCB_CCR to 1. See “Configura-
tion and Control Register”.

Atmel SAMGS55 [DATASHEET] 255

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.14 Configurable Fault Status Register (Byte Access)

Name: SCB_CFSR (BYTE)

Access: Read/Write
31 30 29 28 27 26 25 24

| UFSR |
23 22 21 20 19 18 17 16

| UFSR |
15 14 13 12 11 10 9 8

| BFSR |
7 6 5 4 3 2 1 0

| MMFSR |

* MMFSR: Memory Management Fault Status Subregister

The flags in the MMFSR subregister indicate the cause of memory access faults. See bitfield [7..0] description in Section
13.9.1.13.

* BFSR: Bus Fault Status Subregister

The flags in the BFSR subregister indicate the cause of a bus access fault. See hitfield [14..8] description in Section
13.9.1.13.

» UFSR: Usage Fault Status Subregister

The flags in the UFSR subregister indicate the cause of a usage fault. See bitfield [31..15] description in Section 13.9.1.13.

Note: The UFSR bits are sticky. This means that as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by writing a 1 to that bit, or by a reset.

The SCB_CFSR indicates the cause of a memory management fault, bus fault, or usage fault. It is byte accessible. The
user can access the SCB_CFSR or its subregisters as follows:

» Access complete SCB_CFSR with a word access to 0OxEOOOED28
» Access MMFSR with a byte access to 0OxEOOOED28

» Access MMFSR and BFSR with a halfword access to OXEOOOED28
» Access BFSR with a byte access to OXEOOOED29

» Access UFSR with a halfword access to OXEOOOED2A.

256 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.15 Hard Fault Status Register

Name: SCB_HFSR
Access: Read/Write
31 30 29 28 27 26 25 24

| DEBUGEVT | FORCED | - | - | - | — | - | — |

23 22 21 20 19 18 17 16

. - r - r -+ -+ -1 - ¢ - [- |
15 14 13 12 11 10 9 8

. - r - r -+ -+ - 1 - ¢ - [- |
7 6 5 4 3 2 1 0

. - r - r - - - [- [veerms | - |

The SCB_HFSR gives information about events that activate the hard fault handler. This register is read, write to clear.
This means that bits in the register read normally, but writing a 1 to any bit clears that bit to 0.

 DEBUGEVT: Reserved for Debug Use
When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

» FORCED: Forced Hard Fault

It indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0: No forced hard fault.
1: Forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

* VECTTBL: Bus Fault on a Vector Table

It indicates a bus fault on a vector table read during an exception processing:
0: No bus fault on vector table read.

1: Bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

Note: The HFSR bits are sticky. This means that, as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by writing a 1 to that bit, or by a reset.

Atmel SAMGS55 [DATASHEET] 257

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.16 MemManage Fault Address Register

Name: SCB_MMFAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The SCB_MMFAR contains the address of the location that generated a memory management fault.

 ADDRESS: Memory Management Fault Generation Location Address

When the MMARVALID bit of the MMFSR subregister is set to 1, this field holds the address of the location that generated
the memory management fault.

Notes: 1. When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction
can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

2. Flags in the MMFSR subregister indicate the cause of the fault, and whether the value in the SCB_MMFAR is valid. See
“MMFSR: Memory Management Fault Status Subregister”.

258 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.9.1.17 Bus Fault Address Register

Name: SCB_BFAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The SCB_BFAR contains the address of the location that generated a bus fault.

» ADDRESS: Bus Fault Generation Location Address
When the BFARVALID bit of the BFSR subregister is set to 1, this field holds the address of the location that generated the

bus fault.
Notes: 1.
2.

When an unaligned access faults, the address in the SCB_BFAR is the one requested by the instruction, even if it is not the

address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the SCB_BFAR is valid. See “BFSR: Bus Fault

Status Subregister”.

Atmel

SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

259

13.9.1.18 Auxiliary Fault Status Register

Name: SCB_AFSR

Access: Read/Write
31 30 29 28 27 26 25 24

| IMPDEF |
23 22 21 20 19 18 17 16

| IMPDEF |
15 14 13 12 11 10 9 8

| IMPDEF |
7 6 5 4 3 2 1 0

| IMPDEF |

The SCB_AFSR contains additional system fault information. This register is read, write to clear. This means that bits in
the register read normally, but writing a 1 to any bit clears that bit to 0.

* IMPDEF: Implementation Defined

The bits map to the AUXFAULT input signals.

Notes: 1. Each AFSR bit directly maps to an AUXFAULT input of the processor, and a single-cycle HIGH signal on the input sets the
corresponding AFSR bit to one. It remains set to 1 until the user writes a one to the bit to clear it to zero.

2. When an AFSR bit is latched as one, an exception does not occur. Use an interrupt if an exception is required.

260 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.10 System Timer (SysTick)

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps
to) the value in the SYST_RVR on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging, the counter does not decrement.

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power mode, the SysTick
counter stops.
Ensure that the software uses aligned word accesses to access the SysTick registers.
The SysTick counter reload and current value are undefined at reset; the correct initialization sequence for the
SysTick counter is:

1. Program the reload value.

2. Clear the current value.

3. Program the Control and Status register.

Atmel SAMGS55 [DATASHEET] 261

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.10.1 System Timer (SysTick) User Interface

Table 13-35. System Timer (SYST) Register Mapping

Offset Register Name Access Reset
OxEOOOEO010 SysTick Control and Status Register SYST_CSR Read/Write 0x00000000
OxEOOOEO014 SysTick Reload Value Register SYST_RVR Read/Write Unknown
OxEOOOE018 SysTick Current Value Register SYST_CVR Read/Write Unknown
OXEOOOEO1C SysTick Calibration Value Register SYST_CALIB Read-only 0x00001770
262 SAMGH55 [DATASHEET] AtmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.10.1.1 SysTick Control and Status Register

Name: SYST_CSR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | — | - | — | - | - | - |COUNTFLAG|
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - |CLKSOURCE| TICKINT | ENABLE |

The SysTick SYST_CSR enables the SysTick features.

* COUNTFLAG: Count Flag
Returns 1 if the timer counted to 0 since the last time this was read.

* CLKSOURCE: Clock Source
Indicates the clock source:

0: External Clock.

1: Processor Clock.

» TICKINT: SysTick Exception Request Enable

Enables a SysTick exception request:

0: Counting down to zero does not assert the SysTick exception request.

1: Counting down to zero asserts the SysTick exception request.

The software can use COUNTFLAG to determine if SysTick has ever counted to zero.

* ENABLE: Counter Enable
Enables the counter:

0: Counter disabled.

1: Counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR and then counts down. On reaching
0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the
RELOAD value again, and begins counting.

Atmel SAMGS55 [DATASHEET] 263

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.10.1.2 SysTick Reload Value Registers

Name: SYST_RVR

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| RELOAD |
15 14 13 12 11 10 9 8

| RELOAD |
7 6 5 4 3 2 1 0

| RELOAD |

The SYST_RVR specifies the start value to load into the SYST_CVR.

* RELOAD: SYST_CVR Load Value

Value to load into the SYST_CVR when the counter is enabled and when it reaches 0.

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of 0 is possible, but has no

effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to O.

The RELOAD value is calculated according to its use: For example, to generate a multi-shot timer with a period of N pro-
cessor clock cycles, use a RELOAD value of N-1. If the SysTick interrupt is required every 100 clock pulses, set RELOAD

to 99.

264

SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

13.10.1.3 SysTick Current Value Register

Name: SYST_CVR

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| CURRENT |
15 14 13 12 11 10 9 8

| CURRENT |
7 6 5 4 3 2 1 0

| CURRENT |

The SysTick SYST_CVR contains the current value of the SysTick counter.

» CURRENT: SysTick Counter Current Value
Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

Atmel SAMGS55 [DATASHEET] 265

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.10.1.4 SysTick Calibration Value Register

Name: SYST_CALIB

Access: Read/Write
31 30 29 28 27 26 25 24

| NOREF | SKEW | - — — - - - |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

The SysTick SYST_CSR indicates the SysTick calibration properties.

» NOREF: No Reference Clock

It indicates whether the device provides a reference clock to the processor:

0: Reference clock provided.

1: No reference clock provided.

If your device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit reads-as-one and ignores writes.

o SKEW: TENMS Value Verification

It indicates whether the TENMS value is exact:

0: TENMS value is exact.

1: TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real time clock.

« TENMS: Ten Milliseconds

The reload value for 10 ms (100 Hz) timing is subject to system clock skew errors. If the value reads as zero, the calibra-
tion value is not known.

The TENMS field default value is 0x00001770 (12000 decimal).

In order to achieve a 1 ms timebase on SystTick, the TENMS field must be programmed to a value corresponding to the
processor clock frequency (in kHz) divided by 8.

For example, for devices running the processor clock at 48 MHz, the TENMS field value must be 0x0001770
(48000 kHz/8).

266 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11 Memory Protection Unit (MPU)
The MPU divides the memory map into a number of regions, and defines the location, size, access permissions,
and memory attributes of each region. It supports:
e Independent attribute settings for each region
e Overlapping regions
e Export of memory attributes to the system.
The memory attributes affect the behavior of memory accesses to the region. The Cortex-M4 MPU defines:
e Eight separate memory regions, 0—7
e A background region.
When memory regions overlap, a memory access is affected by the attributes of the region with the highest

number. For example, the attributes for region 7 take precedence over the attributes of any region that overlaps
region 7.

The background region has the same memory access attributes as the default memory map, but is accessible
from privileged software only.

The Cortex-M4 MPU memory map is unified. This means that instruction accesses and data accesses have the
same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory
management fault. This causes a fault exception, and might cause the termination of the process in an OS
environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be
executed. Typically, an embedded OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types (see “Memory Regions, Types and Attributes”).

Table 13-36 shows the possible MPU region attributes. These include Share ability and cache behavior attributes
that are not relevant to most microcontroller implementations. See “MPU Configuration for a Microcontroller” for
guidelines for programming such an implementation.

Table 13-36. Memory Attributes Summary

Memory Type Shareability | Other Attributes Description
) _ _ All accesses to Strongly-ordered memory occur in program order. All
Strongly-ordered Strongly-ordered regions are assumed to be shared.
Shared - Memory-mapped peripherals that several processors share.
Device
Non-shared - Memory-mapped peripherals that only a single processor uses.
Non-cacheable Write-
Shared through Cacheable Normal memory that is shared between several processors.
Write-back Cacheable
Normal
Non-cacheable Write-
Non-shared through Cacheable Normal memory that only a single processor uses.
Write-back Cacheable
SAMG55 [DATASHEET 267
Atmel [:

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.1 MPU Access Permission Attributes

This section describes the MPU access permission attributes. The access permission bits (TEX, C, B, S, AP, and
XN) of the MPU_RASR control the access to the corresponding memory region. If an access is made to an area of
memory without the required permissions, then the MPU generates a permission fault.

The table below shows the encodings for the TEX, C, B, and S access permission bits.

Table 13-37. TEX, C, B, and S Encoding
TEX | C B S Memory Type Shareability | Other Attributes
0 0 | x® | strongly-ordered | Shareable -
1 | x® | Device Shareable -
0 Not _ _
0 Normal shareable Outer and inner write-through. No
b000 write allocate.
1 Shareable
1
Not)]]
1 0 Normal shareable Outer and inner write-back. No write
allocate.
1 Shareable
0 Not
0 0 Normal shareable Outer and inner noncacheable.
1 Shareable
1 | x% | Reserved encoding -
b001 0 | x® Implementation defined _
attributes.
1 0 Not _ _ _
1 Normal shareable Outer and inner write-back. Write and
read allocate.
1 Shareable
0 | x® | Device Not Nonshared Device.
0 shareable
b010 1 | x% | Reserved encoding -
1 | x® | x® | Reserved encoding -
0 Not _
blBB = A A Normal shareable Cacbgd memory BB = outer policy,
AA = inner policy.
1 Shareable
Note: 1. The MPU ignores the value of this bit.

Table 13-38 shows the cache policy for memory attribute encodings with a TEX value is in the range 4-7.

Table 13-38.

Cache Policy for Memory Attribute Encoding

Encoding, AA or BB

Corresponding Cache Policy

00

Non-cacheable

01

Write back, write and read allocate

10

Write through, no write allocate

11

Write back, no write allocate

268 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

Table 13-39 shows the AP encodings that define the access permissions for privileged and unprivileged software.

Table 13-39. AP Encoding
Privileged Unprivileged
AP[2:0] | Permissions Permissions Description
000 No access No access All accesses generate a permission fault
001 RW No access Access from privileged software only
010 RW RO Writes by unprivileged software generate a permission
fault
011 RW RW Full access
100 Unpredictable Unpredictable | Reserved
101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software
13.11.1.1 MPU Mismatch

When an access violates the MPU permissions, the processor generates a memory management fault, see
“Exceptions and Interrupts”. The MMFSR indicates the cause of the fault. See “MMFSR: Memory Management
Fault Status Subregister” for more information.

13.11.1.2 Updating an MPU Region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASRSs. Each register
can be programed separately, or a multiple-word write can be used to program all of these registers. MPU_RBAR
and MPU_RASR aliases can be used to program up to four regions simultaneously using an STM instruction.

13.11.1.3 Updating an MPU Region Using Separate Words

Simple code to configure one region:
; RL = regi on number
; R2 = sizel/enable
; R3 = attributes
; R4 = address

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register

STR R1, [RO, #0x0] ; Regi on Nunber

STR R4, [RO, #0x4] ; Region Base Address
STRH R2, [RO, #0x8] ; Region Size and Enabl e
STRH R3, [RO, #0xA] ; Region Attribute

Disable a region before writing new region settings to the MPU, if the region being changed was previously
enabled. For example:

; RL = regi on nunber

; R2 = sizel/enable

; R3 = attributes

; R4 = address

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register

STR R1, [RO, #0x0] ; Regi on Nunber

BIC RR, R2, #1 ; Disable

STRH R2, [RO, #0x8] ; Region Size and Enabl e
STR R4, [RO, #0x4] ; Regi on Base Address
STRH R3, [RO, #O0xA] ; Region Attribute

ORR R2, #1 : Enabl e

STRH R2, [RO, #0x8] ; Region Size and Enabl e

SAMGS55 [DATASHEET] 269

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

The software must use memory barrier instructions:
e Before the MPU setup, if there might be outstanding memory transfers, such as buffered writes, that might
be affected by the change in MPU settings
e After the MPU setup, if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by entering an exception
handler, or is followed by an exception return, because the exception entry and exception return mechanisms
cause memory barrier behavior.

The software does not need any memory barrier instructions during an MPU setup, because it accesses the MPU
through the PPB, which is a Strongly-Ordered memory region.

For example, if the user wants all of the memory access behavior to take effect immediately after the programming
sequence, a DSB instruction and an ISB instruction must be used. A DSB is required after changing MPU settings,
such as at the end of a context switch. An ISB is required if the code that programs the MPU region or regions is
entered using a branch or call. If the programming sequence is entered using a return from exception, or by taking
an exception, then an ISB is not required.

13.11.1.4 Updating an MPU Region Using Multi-word Writes

The user can program directly using multi-word writes, depending on how the information is divided. Consider the
following reprogramming:

; RL = region nunber

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register
STR R1, [RO, #0x0] ; Region Nunber

STR R2, [RO, #0x4] ; Region Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:
; RL = region nunber

; R2 = address

. R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register

STM RO, {R1l-R3} ; Region Number, address, attribute, size and enable

This can be done in two words for pre-packed information. This means that the MPU_RBAR contains the required
region number and had the VALID bit set to 1. See “"MPU Region Base Address Register”. Use this when the data
is statically packed, for example in a boot loader:

; RL = address and regi on nunber in one

; RR = size and attributes in one

LDR RO, =MPU_RBAR ; OXEOOOED9C, MPU Regi on Base regi ster
STR R1, [RO, #0x0] ; Region base address and

; region nunber conbined with VALID (bit 4) set to 1
STR R2, [RO, #0x4] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:
; RL = address and regi on nunber in one
; R2 = size and attributes in one
LDR RO, =MPU_RBAR ; OXEOOOED9C, MPU Regi on Base register
STM RO, {R1l-R2} ; Regi on base address, region nunber and VALID bit,
; and Region Attribute, Size and Enabl e

270 SAMGS55 [DATASHEET] /ltmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.1.5 Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD
field of the MPU_RASR field to disable a subregion. See “MPU Region Attribute and Size Register”. The least
significant bit of SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling
a subregion means another region overlapping the disabled range matches instead. If no other enabled region
overlaps the disabled subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be
set to 0x00, otherwise the MPU behavior is unpredictable.

13.11.1.6 Example of SRD Use

Two regions with the same base address overlap. Region 1 is 128 KB, and region 2 is 512 KB. To ensure the
attributes from region 1 apply to the first 128 KB region, set the SRD field for region 2 to bOO000011 to disable the
first two subregions, as in Figure 13-13 below:

Figure 13-13. SRD Use

Region 2, with Offset from
subregions base address
512KB
448KB
384KB
320KB
256KB
Region 1 192KB

128KB
Disabled subregion

Disabled subregion 64KB
Base address of both regions 9 0

13.11.1.7 MPU Design Hints And Tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt
handlers might access.

Ensure the software uses aligned accesses of the correct size to access MPU registers:
e Except for the MPU_RASR, it must use aligned word accesses
e Forthe MPU_RASR, it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent
any previous region settings from affecting the new MPU setup.

MPU Configuration for a Microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU
as follows:

Table 13-40. Memory Region Attributes for a Microcontroller

Memory Region | TEX C | B | S | Memory Type and Attributes
Flash memory b000 1 | 0 | 0 | Normal memory, non-shareable, write-through
Internal SRAM b000 1 | 0 | 1 | Normal memory, shareable, write-through
External SRAM b000 1 | 1 | 1 | Normal memory, shareable, write-back, write-allocate
Peripherals b000 0 | 1 | 1 | Device memory, shareable
/ItmeL SAMG55 [DATASHEET] 271
Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions can make the application code more portable. The
values given are for typical situations. In special systems, such as multiprocessor designs or designs with a
separate DMA engine, the shareability attribute might be important. In these cases, refer to the recommendations
of the memory device manufacturer.

272 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2 Memory Protection Unit (MPU) User Interface

Table 13-41. Memory Protection Unit (MPU) Register Mapping

Offset Register Name Access Reset

OxXEOOOED90 MPU Type Register MPU_TYPE Read-only 0x00000800
OXEOOOED94 MPU Control Register MPU_CTRL Read/Write | 0x00000000
OXEOOOED98 MPU Region Number Register MPU_RNR Read/Write | 0x00000000
OXEOOOED9C | MPU Region Base Address Register MPU_RBAR Read/Write | 0x00000000
OXEOOOEDAO MPU Region Attribute and Size Register MPU_RASR Read/Write | 0x00000000
OXEOOOEDA4 MPU Region Base Address Register Alias 1 MPU_RBAR_A1 | Read/Write | 0x00000000
OXEOOOEDAS8 MPU Region Attribute and Size Register Alias 1 MPU_RASR_A1l Read/Write | 0x00000000
OXEOOOEDAC | MPU Region Base Address Register Alias 2 MPU_RBAR_A2 | Read/Write | 0x00000000
OxEOOOEDBO MPU Region Attribute and Size Register Alias 2 MPU_RASR_A2 | Read/Write | 0x00000000
OxXEOOOEDB4 | MPU Region Base Address Register Alias 3 MPU_RBAR_A3 | Read/Write | 0x00000000
OXEOOOEDBS MPU Region Attribute and Size Register Alias 3 MPU_RASR_A3 | Read/Write | 0x00000000

Atmel

SAMGS55 [DATASHEET] 273

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2.1 MPU Type Register

Name: MPU_TYPE

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| IREGION |
15 14 13 12 11 10 9 8

| DREGION |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | SEPARATE |

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.

* IREGION: Instruction Region
Indicates the number of supported MPU instruction regions.
Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

* DREGION: Data Region
Indicates the number of supported MPU data regions:
0x08 = Eight MPU regions.

» SEPARATE: Separate Instruction
Indicates support for unified or separate instruction and date memory maps:
0: Unified.

274 SAMG55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2.2 MPU Control Register

Name: MPU_CTRL

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | - | - | - |PRIVDEFENA| HENMIENA | ENABLE |

The MPU CTRL register enables the MPU, enables the default memory map background region, and enables the use of
the MPU when in the hard fault, Non-maskable Interrupt (NMI), and FAULTMASK escalated handlers.

 PRIVDEFENA: Privileged Default Memory Map Enable
Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables the use of the default memory map. Any memory access to a location not covered by
any enabled region causes a fault.

1: If the MPU is enabled, enables the use of the default memory map as a background region for privileged software
accesses.

When enabled, the background region acts as a region number -1. Any region that is defined and enabled has priority over
this default map.

If the MPU is disabled, the processor ignores this bit.

* HFNMIENA: Hard Fault and NMI Enable

Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.

When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit.
1. The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1, the behavior is unpredictable.

« ENABLE: MPU Enable

Enables the MPU:

0: MPU disabled.

1: MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

« For privileged accesses, the default memory map is as described in “Memory Model”. Any access by privileged
software that does not address an enabled memory region behaves as defined by the default memory map.

» Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

Atmel SAMGS55 [DATASHEET] 275

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless
the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged soft-
ware can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the
MPU is not implemented. The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are
accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with
priority —1 or —2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is
enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

276 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2.3 MPU Region Number Register

Name: MPU_RNR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| REGION |

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASRs.

» REGION: MPU Region Referenced by the MPU_RBAR and MPU_RASRs
Indicates the MPU region referenced by the MPU_RBAR and MPU_RASRSs.
The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, the required region number is written to this register before accessing the MPU_RBAR or MPU_RASR. How-
ever, the region number can be changed by writing to the MPU_RBAR with the VALID bit set to 1; see “MPU Region Base
Address Register”. This write updates the value of the REGION field.

Atmel SAMG55 [DATASHEET] 277

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2.4 MPU Region Base Address Register

Name: MPU_RBAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

» ADDR: Region Base Address

Software must ensure that the value written to the ADDR field aligns with the size of the selected region (SIZE field in the
MPU_RASR).

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,
for example, at 0x00010000 or 0x00020000.

* VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for
the region specified in the REGION field.

Always reads as zero.

 REGION: MPU Region
For the behavior on writes, see the description of the VALID field.
On reads, returns the current region number, as specified by the MPU_RNR.

278 SAMGS55 [DATASHEET] /ltmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2.5 MPU Region Attribute and Size Register

Name: MPU_RASR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - XN - I AP |
23 22 21 20 19 18 17 16

| — | - | TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
 The least significant halfword holds the region size, and the region and subregion enable bits.

* XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

* AP: Access Permission
See Table 13-39.

* TEX, C, B: Memory Access Attributes
See Table 13-37.

* S: Shareable
See Table 13-37.

¢ SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

Atmel SAMGS55 [DATASHEET] 279

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:
(Region size in bytes) = 2(51Z&+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU RBAR.

SIZE Value Region Size Value of N Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1KB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR,; see “MPU Region Base Address Register”

« ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes”.

280 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2.6 MPU Region Base Address Register Alias 1

Name: MPU_RBAR_A1

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified
by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,
for example, at 0x00010000 or 0x00020000.

* VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for
the region specified in the REGION field.

Always reads as zero.

 REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

Atmel SAMGS55 [DATASHEET] 281

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2.7 MPU Region Attribute and Size Register Alias 1

Name: MPU_RASR_A1

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - XN - I AP |
23 22 21 20 19 18 17 16

| - | TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
 The least significant halfword holds the region size, and the region and subregion enable bits.

* XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

* AP: Access Permission
See Table 13-39.

* TEX, C, B: Memory Access Attributes
See Table 13-37.

* S: Shareable
See Table 13-37.

¢ SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

282 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:
(Region size in bytes) = 2(517&+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU RBAR.

SIZE Value Region Size Value of N Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1KB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR,; see “MPU Region Base Address Register”

« ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes”.

Atmel SAMGS55 [DATASHEET] 283

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2.8 MPU Region Base Address Register Alias 2

Name: MPU_RBAR_A2

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified
by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,
for example, at 0x00010000 or 0x00020000.

* VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for
the region specified in the REGION field.

Always reads as zero.

 REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

284 SAMGS5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2.9 MPU Region Attribute and Size Register Alias 2

Name: MPU_RASR_A2

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - XN - I AP |
23 22 21 20 19 18 17 16

| — | - | TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
 The least significant halfword holds the region size, and the region and subregion enable bits.

* XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

* AP: Access Permission
See Table 13-39.

* TEX, C, B: Memory Access Attributes
See Table 13-37.

* S: Shareable
See Table 13-37.

¢ SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

Atmel SAMGS55 [DATASHEET] 285

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:
(Region size in bytes) = 2(51Z&+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU RBAR.

SIZE Value Region Size Value of N Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1KB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR,; see “MPU Region Base Address Register”

« ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes”.

286 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2.10 MPU Region Base Address Register Alias 3

Name: MPU_RBAR_A3

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified
by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,
for example, at 0x00010000 or 0x00020000.

* VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for
the region specified in the REGION field.

Always reads as zero.

 REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

Atmel SAMGS55 [DATASHEET] 287

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.11.2.11 MPU Region Attribute and Size Register Alias 3

Name: MPU_RASR_A3

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - XN - I AP |
23 22 21 20 19 18 17 16

| — | - | TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
 The least significant halfword holds the region size, and the region and subregion enable bits.

* XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

* AP: Access Permission
See Table 13-39.

* TEX, C, B: Memory Access Attributes
See Table 13-37.

* S: Shareable
See Table 13-37.

¢ SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

288 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

e SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:
(Region size in bytes) = 2(517&+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU RBAR.

SIZE Value Region Size Value of N Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1KB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR,; see “MPU Region Base Address Register”

« ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes”.

Atmel SAMGS55 [DATASHEET] 289

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.12 Floating Point Unit (FPU)
The Cortex-M4F FPU implements the FPv4-SP floating-point extension.

The FPU fully supports single-precision add, subtract, multiply, divide, multiply and accumulate, and square root
operations. It also provides conversions between fixed-point and floating-point data formats, and floating-point
constant instructions.

The FPU provides floating-point computation functionality that is compliant with the ANSI/IEEE Std 754-2008,
IEEE Standard for Binary Floating-Point Arithmetic, referred to as the IEEE 754 standard.

The FPU contains 32 single-precision extension registers, which can also be accessed as 16 doubleword registers
for load, store, and move operations.

13.12.1 Enabling the FPU

The FPU is disabled from reset. It must be enabled before any floating-point instructions can be used. Example 4-
1 shows an example code sequence for enabling the FPU in both privileged and user modes. The processor must
be in privileged mode to read from and write to the CPACR.

Example of Enabling the FPU:
; CPACR is |ocated at address OxEOOOEDS88
LDR W R0, =0xEOOOED88
; Read CPACR
LDR R1, [RO]
; Set bits 20-23 to enable CP10 and CP1l coprocessors
ORR R1, R1, #(O0xF << 20)
; Wite back the nodified value to the CPACR
STR RL, [RO]; wait for store to conplete

DSB
;reset pipeline now the FPU is enabled
| SB
290 SAMGH55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.12.2 Floating Point Unit (FPU) User Interface

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Table 13-42. Floating Point Unit (FPU) Register Mapping
Offset Register Name Access Reset
OxEOOOEDS88 Coprocessor Access Control Register CPACR Read/Write 0x00000000
OXEOOOEF34 Floating-point Context Control Register FPCCR Read/Write 0xC0000000
OXEOOOEF38 Floating-point Context Address Register FPCAR Read/Write -
- Floating-point Status Control Register FPSCR Read/Write -
OXEOOOEO1C Floating-point Default Status Control Register FPDSCR Read/Write 0x00000000
/ItmeL SAMG55 [DATASHEET] 291

13.12.2.1 Coprocessor Access Control Register

Name: CPACR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - - I - I - I - I - |
23 22 21 20 19 18 17 16

| CP11 | CP10 | - | — | - | - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

The CPACR specifies the access privileges for coprocessors.

» CP10: Access Privileges for Coprocessor 10

The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.
1: Privileged access only. An unprivileged access generates a NOCP fault.
2: Reserved. The result of any access is unpredictable.

3: Full access.

» CP11: Access Privileges for Coprocessor 11

The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.
1: Privileged access only. An unprivileged access generates a NOCP fault.
2: Reserved. The result of any access is unpredictable.

3: Full access.

292 SAMGS55 [DATASHEET] /ltmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.12.2.2 Floating-point Context Control Register

Name: FPCCR

Access: Read/Write
31 30 29 28 27 26 25 24

| ASPEN | LSPEN | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - | MONRDY |
7 6 5 4 3 2 1 0

| - | BFRDY | MMRDY | HFRDY | THREAD| - | USER |LSPACT|

The FPCCR sets or returns FPU control data.

 ASPEN: Automatic Hardware State Preservation And Restoration

Enables CONTROL bit [2] setting on execution of a floating-point instruction. This results in an automatic hardware state
preservation and restoration, for floating-point context, on exception entry and exit.

0: Disable CONTROL bit [2] setting on execution of a floating-point instruction.
1: Enable CONTROL bit [2] setting on execution of a floating-point instruction.

* LSPEN: Automatic Lazy State Preservation
0: Disable automatic lazy state preservation for floating-point context.
1: Enable automatic lazy state preservation for floating-point context.

* MONRDY: Debug Monitor Ready

0: DebugMonitor is disabled or the priority did not permit to set MON_PEND when the floating-point stack frame was
allocated.

1: DebugMonitor is enabled and the priority permitted to set MON_PEND when the floating-point stack frame was
allocated.

 BFRDY: Bus Fault Ready

0: BusFault is disabled or the priority did not permit to set the BusFault handler to the pending state when the floating-point
stack frame was allocated.

1: BusFault is enabled and the priority permitted to set the BusFault handler to the pending state when the floating-point
stack frame was allocated.

« MMRDY: Memory Management Ready

0: MemManage is disabled or the priority did not permit to set the MemManage handler to the pending state when the float-
ing-point stack frame was allocated.

1: MemManage is enabled and the priority permitted to set the MemManage handler to the pending state when the float-
ing-point stack frame was allocated.

Atmel SAMGS55 [DATASHEET] 293

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

¢ HFRDY: Hard Fault Ready

0: The priority did not permit to set the HardFault handler to the pending state when the floating-point stack frame was
allocated.

1: The priority permitted to set the HardFault handler to the pending state when the floating-point stack frame was
allocated.

e THREAD: Thread Mode
0: The mode was not the Thread Mode when the floating-point stack frame was allocated.
1: The mode was the Thread Mode when the floating-point stack frame was allocated.

¢ USER: User Privilege Level
0: The privilege level was not User when the floating-point stack frame was allocated.
1: The privilege level was User when the floating-point stack frame was allocated.

¢ LSPACT: Lazy State Preservation Active
0: The lazy state preservation is not active.

1: The lazy state preservation is active. The floating-point stack frame has been allocated but saving the state to it has
been deferred.

294 SAMGSS5 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.12.2.3 Floating-point Context Address Register

Name: FPCAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS | - | - | - |

The FPCAR holds the location of the unpopulated floating-point register space allocated on an exception stack frame.

 ADDRESS: Location of Unpopulated Floating-point Register Space Allocated on an Exception Stack Frame
The location of the unpopulated floating-point register space allocated on an exception stack frame.

Atmel SAMGS55 [DATASHEET] 295

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.12.2.4 Floating-point Status Control Register

Name: FPSCR

Access: Read/Write
31 30 29 28 27 26 25 24

| N | Z | C | \Y | - | AHP | DN | Fz |
23 22 21 20 19 18 17 16

I RMode I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| IDC | - | - | IXC | UFC | OFC | DzC | 10C |

The FPSCR provides all necessary User level control of the floating-point system.

* N: Negative Condition Code Flag
Floating-point comparison operations update this flag.

e Z: Zero Condition Code Flag
Floating-point comparison operations update this flag.

» C: Carry Condition Code Flag
Floating-point comparison operations update this flag.

» V: Overflow Condition Code Flag
Floating-point comparison operations update this flag.

* AHP: Alternative Half-precision Control
0: IEEE half-precision format selected.
1: Alternative half-precision format selected.

* DN: Default NaN Mode Control
0: NaN operands propagate through to the output of a floating-point operation.
1: Any operation involving one or more NaNs returns the Default NaN.

* FZ: Flush-to-zero Mode Control
0: Flush-to-zero mode disabled. The behavior of the floating-point system is fully compliant with the IEEE 754 standard.
1: Flush-to-zero mode enabled.

 RMode: Rounding Mode Control

The encoding of this field is:

0b00: Round to Nearest (RN) mode

0b01: Round towards Plus Infinity (RP) mode.
0b10: Round towards Minus Infinity (RM) mode.

296 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

0b11: Round towards Zero (RZ) mode.
The specified rounding mode is used by almost all floating-point instructions.

* IDC: Input Denormal Cumulative Exception
IDC is a cumulative exception bit for floating-point exception; see also bits [4:0].
This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

» IXC: Inexact Cumulative Exception
IXC is a cumulative exception bit for floating-point exception; see also bit [7].
This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

e UFC: Underflow Cumulative Exception
UFC is a cumulative exception bit for floating-point exception; see also bit [7].
This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

» OFC: Overflow Cumulative Exception
OFC is a cumulative exception bit for floating-point exception; see also bit [7].
This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

» DZC: Division by Zero Cumulative Exception
DZC is a cumulative exception bit for floating-point exception; see also bit [7].
This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

e IOC: Invalid Operation Cumulative Exception
IOC is a cumulative exception bit for floating-point exception; see also bit [7].
This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

Atmel SAMGS55 [DATASHEET] 297

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.12.2.5 Floating-point Default Status Control Register

Name: FPDSCR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - | AP | DN] Fz |
23 22 21 20 19 18 17 16

I RMode I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

The FPDSCR holds the default values for the floating-point status control data.

» AHP: FPSCR.AHP Default Value
Default value for FPSCR.AHP.

 DN: FPSCR.DN Default Value
Default value for FPSCR.DN.

* FZ: FPSCR.FZ Default Value
Default value for FPSCR.FZ.

» RMode: FPSCR.RMode Default Value
Default value for FPSCR.RMode.

298 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

13.13 Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates to a processor that the value associated with a memory access is invalid.
An abort can be caused by the external or internal memory system as a result of attempting to access
invalid instruction or data memory.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size is
said to be aligned. Aligned words and halfwords have addresses that are divisible by four and two
respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses that are
divisible by four and two respectively.

Banked register A register that has multiple physical copies, where the state of the processor determines which copy is
used. The Stack Pointer, SP (R13) is a banked register.

Base register In instruction descriptions, a register specified by a load or store instruction that is used to hold the
base value for the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the address that is
sent to memory.

See also “Index register”.

Big-endian (BE) Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also “Byte-invariant”, “Endianness”, “Little-endian (LE)”.

Big-endian memory Memory in which:
a byte or halfword at a word-aligned address is the most significant byte or halfword within the word at
that address,
a byte at a halfword-aligned address is the most significant byte within the halfword at that address.

See also “Little-endian memory”.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of register
contents, memory locations, variable values at fixed points in the program execution to test that the
program is operating correctly. Breakpoints are removed after the program is successfully tested.

Byte-invariant In a byte-invariant system, the address of each byte of memory remains unchanged when switching
between little-endian and big-endian operation. When a data item larger than a byte is loaded from or
stored to memory, the bytes making up that data item are arranged into the correct order depending
on the endianness of the memory access.

An ARM byte-invariant implementation also supports unaligned halfword and word memory accesses.
It expects multi-word accesses to be word-aligned.

Cache A block of on-chip or off-chip fast access memory locations, situated between the processor and main
memory, used for storing and retrieving copies of often used instructions, data, or instructions and
data. This is done to greatly increase the average speed of memory accesses and so improve
processor performance.

Atmel SAMGS55 [DATASHEET] 299

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Condition field

Conditional execution

Context

Coprocessor

Debugger

Direct Memory Access
(DMA)

Doubleword

Doubleword-aligned

Endianness

Exception

Exception service routine

Exception vector

Flat address mapping

Halfword

lllegal instruction

300 SAMG55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

A four-bit field in an instruction that specifies a condition under which the instruction can execute.

If the condition code flags indicate that the corresponding condition is true when the instruction starts
executing, it executes normally. Otherwise, the instruction does nothing.

The environment that each process operates in for a multitasking operating system. In ARM
processors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.

A processor that supplements the main processor. Cortex-M4 does not support any coprocessors.

A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

An operation that accesses main memory directly, without the processor performing any accesses to
the data concerned.

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

A data item having a memory address that is divisible by eight.

Byte ordering. The scheme that determines the order that successive bytes of a data word are stored
in memory. An aspect of the system’s memory mapping.

See also “Little-endian (LE)” and “Big-endian (BE)”.

An event that interrupts program execution. When an exception occurs, the processor suspends the
normal program flow and starts execution at the address indicated by the corresponding exception
vector. The indicated address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults
include attempting an invalid memory access, attempting to execute an instruction in an invalid
processor state, and attempting to execute an undefined instruction.

See “Interrupt handler”.

See “Interrupt vector”.

A system of organizing memory in which each physical address in the memory space is the same as
the corresponding virtual address.

A 16-bit data item.

An instruction that is architecturally Undefined.

Atmel

Implementation-defined

Implementation-specific

Index register

Instruction cycle count
Interrupt handler

Interrupt vector

Little-endian (LE)

Little-endian memory

Load/store architecture

Memory Protection Unit
(MPU)

Prefetching

Preserved

Atmel

The behavior is not architecturally defined, but is defined and documented by individual
implementations.

The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the option
chosen does not affect software compatibility.

In some load and store instruction descriptions, the value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some
addressing modes optionally enable the index register value to be shifted prior to the addition or
subtraction.

See also “Base register”.

The number of cycles that an instruction occupies the Execute stage of the pipeline.

A program that control of the processor is passed to when an interrupt occurs.

One of a number of fixed addresses in low memory, or in high memory if high vectors are configured,
that contains the first instruction of the corresponding interrupt handler.

Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing
addresses in memory.

See also “Big-endian (BE)", “Byte-invariant”, “Endianness”.

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at
that address,

a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

See also “Big-endian memory”.

A processor architecture where data-processing operations only operate on register contents, not
directly on memory contents.

Hardware that controls access permissions to blocks of memory. An MPU does not perform any
address translation.

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before
the preceding instructions have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

Preserved by writing the same value back that has been previously read from the same field on the
same processor.

SAMGS55 [DATASHEET] 301

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Read

Region

Reserved

Thread-safe

Thumb instruction

Unaligned

Undefined

Unpredictable

Warm reset

WA

WB

Word

Write

Write-allocate (WA)

Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb
instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

A partition of memory space.

A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These fields
are reserved for use in future extensions of the architecture or are implementation-specific. All
reserved bits not used by the implementation must be written as 0 and read as 0.

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing
shared resources, to ensure correct operation without the risk of shared access conflicts.

One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be
halfword-aligned.

A data item stored at an address that is not divisible by the number of bytes that defines the data size
is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Indicates an instruction that generates an Undefined instruction exception.

One cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Also known as a core reset. Initializes the majority of the processor excluding the debug controller and
debug logic. This type of reset is useful if debugging features of a processor.

See “Write-allocate (WA)".

See “Write-back (WB)”.

A 32-bit data item.

Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.

In a write-allocate cache, a cache miss on storing data causes a cache line to be allocated into the
cache.

302 SAMGS55 [DATASHEET] /ltmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Write-back (WB) In a write-back cache, data is only written to main memory when it is forced out of the cache on line
replacement following a cache miss. Otherwise, writes by the processor only update the cache. This is
also known as copyback.

Write buffer A block of high-speed memory, arranged as a FIFO buffer, between the data cache and main memory,
whose purpose is to optimize stores to main memory.

Write-through (WT) In a write-through cache, data is written to main memory at the same time as the cache is updated.

SAMGS55 [DATASHEET] 303

A t ' I IeL Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Cortex-M Cache Controller (CMCC)

14.

14.1

14.2

304

Description

The Cortex-M Cache Controller (CMCC) is a 4-Way set associative unified cache controller. It integrates a

controller, a tag directory, data memory, metadata memory and a configuration interface.

Embedded Characteristics

Physically addressed and physically tagged

CMCC memory size set to 8KB

L1 data cache set up to 8 Kbytes

L1 Tightly Coupled Memory RAM (TCM) up to 16KB

L1 cache line size set to 16 Bytes

L1 cache integrates 32 bus master interface

Software-allocated RAM resource between cache and TCM
Unified direct mapped cache architecture

Unified 4-Way set associative cache architecture

Write through cache operations, read allocate

Round Robin victim selection policy

Event Monitoring, with one programmable 32-bit counter
Configuration registers accessible through Cortex-M Private Peripheral Bus (PPB)
Cache interface includes cache maintenance operations registers

SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

14.3 Block Diagram

Figure 14-1. Block Diagram
Cortex-M Memory Interface Bus

Cortex-M interface

Cache META INFO RAM
Controller
RAM TCM RAM
Interface | [oo
[DATA RAM
Cortex-M Registers
PPB Interface A RAM

Memory Interface

System Memory Bus

14.4 Functional Description

14.4.1 Cache Operation

On reset, the cache controller data entries are all invalidated and the cache is disabled. The cache is transparent
to processor operations. The cache controller is activated with its configuration registers. The configuration
interface is memory-mapped in the private peripheral bus.
Use the following sequence to enable the cache controller:

1. Verify that the cache controller is disabled by reading the value of the CSTS (Cache Controller Status) bit
of the Status register (CMCC_SR).

2. Enable the cache controller by writing a one to the CEN (Cache Enable) bit of the Control register
(CMCC_CTRL).
The cache controller integrates three memory areas, selectable through address decoding:
e A cacheable memory area—allows software execution with code located in slow memory (embedded Flash)
e A TCM area—provides fast and predictable code execution and data access
e A non-cacheable memory area—permits data and instruction access to system-level shared memory or
peripheral

The total amount of RAM is shared between the cache controller and the TCM. If the application requires a large
amount of TCM, the cache can be disabled and its memory reused. If the application requires only cache memory,
the TCM is reallocated to the cache memory. The size of the RAM allocated to the cache is defined in the

Atmel SAMGS55 [DATASHEET] 305

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

PRGCSIZE field of the CMCC_CFG register. The difference between the cache size and the total CMCC RAM
size is automatically allocated as TCM.

14.4.2 Cache Maintenance

If the contents seen by the cache have changed, the user must invalidate the cache entries. This can be done line-
by-line or for all cache entries.

14.4.2.1 Cache Invalidate-by-Line Operation

When an invalidate-by-line command is issued, the cache controller resets the valid bit information of the decoded
cache line. As the line is no longer valid, the replacement counter points to that line.
Use the following sequence to invalidate one line of cache:

1. Disable the cache controller by clearing the CEN bit of CMCC_CTRL.

2. Check the CSTS bit of CMCC_SR to verify that the cache is successfully disabled.

3. Perform an invalidate-by-line by configuring the bits INDEX and WAY in the Maintenance Register 1
(CMCC_MAINT1).

4. Enable the cache controller by writing a one the CEN bit of the CMCC_CTRL.
14.4.2.2 Cache Invalidate All Operation

To invalidate all cache entries, write a one to the INVALL bit of the Maintenance Register 0 (CMCC_MAINTO).

14.4.3 Cache Performance Monitoring
The Cortex-M cache controller includes a programmable 32-bit monitor counter. The monitor can be configured to
count the number of clock cycles, the number of data hits or the number of instruction hits.
Use the following sequence to activate the counter:

1. Configure the monitor counter by writing to the MODE field of the Monitor Configuration register
(CMCC_MCEFG).

2. Enable the counter by writing a one to the MENABLE bit of the Monitor Enable register (CMCC_MEN).

3. Ifrequired, clear the counter by writing a one to the SWRST bit of the Monitor Control register
(CMCC_MCTRL).

4. Check the value of the monitor counter by reading the EVENT_CNT field of the CMCC_MSR.

306 SAMG55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15 A t I I I eL

14.5 Cortex-M Cache Controller (CMCC) User Interface

Table 14-1. Register Mapping

Offset Register Name Access Reset

0x00 Cache Controller Type Register CMCC_TYPE Read-only 0X000013D7
0x04 Cache Controller Configuration Register CMCC_CFG Read/Write 0x00000020
0x08 Cache Controller Control Register CMCC_CTRL Write-only -

0x0C Cache Controller Status Register CMCC_SR Read-only 0X00000000
0x10-0x1C Reserved - - -

0x20 Cache Controller Maintenance Register 0 CMCC_MAINTO Write-only -

0x24 Cache Controller Maintenance Register 1 CMCC_MAINT1 Write-only -

0x28 Cache Controller Monitor Configuration Register CMCC_MCFG Read/Write 0x00000000
0x2C Cache Controller Monitor Enable Register CMCC_MEN Read/Write 0x00000000
0x30 Cache Controller Monitor Control Register CMCC_MCTRL Write-only -

0x34 Cache Controller Monitor Status Register CMCC_MSR Read-only 0x00000000
0x38-0xFC Reserved - - -

Atmel

SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

307

14.5.1 Cache Controller Type Register

Name: CMCC_TYPE

Address: 0x4003C000

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | | CLSIZE | CSIZE |
7 6 5 4 3 2 1 0

| LCKDOWN | WAYNUM | RRP LRUP | RANDP GCLK AP |

» AP: Access Port Access Allowed
0: Access Port Access is disabled.

1: Access Port Access is enabled.

e GCLK: Dynamic Clock Gating Supported
0: Cache controller does not support clock gating.

1: Cache controller uses dynamic clock gating.

 RANDP: Random Selection Policy Supported
0: Random victim selection is not supported.
1: Random victim selection is supported.

* LRUP: Least Recently Used Policy Supported
0: Least Recently Used Policy is not supported.
1: Least Recently Used Policy is supported.

 RRP: Random Selection Policy Supported
0: Random Selection Policy is not supported.

1: Random Selection Policy is supported.

« WAYNUM: Number of Ways

Value Name Description
0 DMAPPED Direct Mapped Cache
1 ARCH2WAY 2-way set associative
2 ARCH4WAY 4-way set associative
3 ARCH8WAY 8-way set associative

308 SAMGS55 [DATASHEET] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

 LCKDOWN: Lockdown Supported
0: Lockdown is not supported.
1: Lockdown is supported.

» CSIZE: Data Cache Size

Value Name Description
0 CSIZE_1KB Data cache size is 1 Kbyte
1 CSIZE_2KB Data cache size is 2 Khytes
2 CSIZE_4KB Data cache size is 4 Kbytes
3 CSIZE_8KB Data cache size is 8 Kbytes

 CLSIZE: Cache Lilne Size

Value Name Description
0 CLSIZE_1KB Cache line size is 4 bytes
1 CLSIZE_2KB Cache line size is 8 bytes
2 CLSIZE_4KB Cache line size is 16 bytes
3 CLSIZE_8KB Cache line size is 32 bytes
/ItmeL SAMG55 [DATASHEET] 309

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

14.5.2 Cache Controller Configuration Register

Name: CMCC_CFG

Address: 0x4003C004

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | PRGCSIZE | - | DCDIS | ICDIS | GCLKDIS |

* GCLKDIS: Disable Clock Gating
0: Clock gating is activated.
1: Clock gating is disabled.

e ICDIS: Instruction Caching Disable
0: Instruction caching enabled.
1: Instruction caching disabled.

» DCDIS: Data Caching Disable
0: Data caching enabled.
1: Data caching disabled.

* PRGCSIZE: Programmable Cache Size

Value Name Description
0 - Reserved
1 PRGCSIZE_2KB Programmable cache size is 2 Kbytes
2 PRGCSIZE_4KB Programmable cache size is 4 Kbytes (default value)
3 PRGCSIZE_8KB Programmable cache size is 8 Kbytes
310 SAMGH55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

14.5.3 Cache Controller Control Register

Name: CMCC_CTRL

Address: 0x4003C008

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | CEN |

* CEN: Cache Controller Enable

0: The cache controller is disabled.

1: The cache controller is enabled.

/ItmeL SAMG55 [DATASHEET] 311

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

14.5.4 Cache Controller Status Register

Name: CMCC_SR

Address: 0x4003C00C

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- /]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - [csts |

¢ CSTS: Cache Controller Status
0: The cache controller is disabled.
1: The cache controller is enabled.

312 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

14.5.5 Cache Controller Maintenance Register 0

Name: CMCC_MAINTO

Address: 0x4003C020

Access: Write-only
31 30 29 28 27 26 25 24

I - I - | - - I - I - | - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - | - - I - I - | - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - [NVALL |

* INVALL: Cache Controller Invalidate All
0: No effect.
1: All cache entries are invalidated.

Atmel SAMGS55 [DATASHEET] 313

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

14.5.6 Cache Controller Maintenance Register 1

Name: CMCC_MAINT1
Address: 0x4003C024
Access: Write-only
31 30 29 28 27 26 25 24
I WAY I - I - I - I - - - |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
. - r -+ -1r -+ -+ = | = [Wb |
7 6 5 4 3 2 1 0
| INDEX | - | — — - |
* INDEX: Invalidate Index
This field indicates the cache line that is being invalidated.
The size of the INDEX field depends on the cache size:
For example:
— for 2 Kbytes: 5 bits
— for 4 Kbytes: 6 bits
— for 8 Kbytes: 7 bits
« WAY: Invalidate Way
Value Name Description
0 WAYO Way 0 is selection for index invalidation
1 WAY1 Way 1 is selection for index invalidation
2 WAY2 Way 2 is selection for index invalidation
3 WAY3 Way 3 is selection for index invalidation
314 SAMGH55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

14.5.7 Cache Controller Monitor Configuration Register

Name: CMCC_MCFG

Address: 0x4003C028

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | MODE |

» MODE: Cache Controller Monitor Counter Mode

Value Name Description
0 CYCLE_COUNT Cycle counter
1 IHIT_COUNT Instruction hit counter
2 DHIT_COUNT Data hit counter

Atmel SAMGS55 [DATASHEET] 315

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

14.5.8 Cache Controller Monitor Enable Register

Name: CMCC_MEN

Address: 0x4003C02C

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | MENABLE |

« MENABLE: Cache Controller Monitor Enable

0: The monitor counter is disabled.

1: The monitor counter is enabled.

316 SAMG55 [DATASHEET
[] Atmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

14.5.9 Cache Controller Monitor Control Register

Name: CMCC_MCTRL

Address: 0x4003C030

Access: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- /]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - [SWRST |

» SWRST: Monitor
0: No effect.

1: Resets the event counter register.

Atmel SAMGS55 [DATASHEET] 317

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

14.5.10 Cache Controller Monitor Status Register

Name: CMCC_MSR

Address: 0x4003C034

Access: Read-only
31 30 29 28 27 26 25 24

| EVENT_CNT |
23 22 21 20 19 18 17 16

| EVENT_CNT |
15 14 13 12 11 10 9 8

| EVENT_CNT |
7 6 5 4 3 2 1 0

| EVENT_CNT |

e EVENT_CNT: Monitor Event Counter

318 SAMGS55 [DATASHEET] /Itmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

15. Bus Matrix (MATRIX)

15.1 Description

The Bus Matrix (MATRIX) implements a multi-layer AHB that enables parallel access paths between multiple AHB
masters and slaves in a system, thus increasing overall bandwidth. The Bus Matrix interconnects three AHB
masters to four AHB slaves. The normal latency to connect a master to a slave is one cycle. The exception is the
default master of the accessed slave which is connected directly (zero cycle latency).

The Bus Matrix user interface also provides a System 1/O Configuration user interface with registers that support
application-specific features.

15.2 Embedded Characteristics

Atmel

One Decoder for Each Master
Support for Long Bursts of 32, 64 and 128 Beats and Up to the 256-beat Word Burst AHB Limit
Enhanced Programmable Mixed Arbitration for Each Slave
— Round-robin
— Fixed Priority
— Latency Quality of Service
Programmable Default Master for Each Slave
— No Default Master
— Last Accessed Default Master
— Fixed Default Master
Deterministic Maximum Access Latency for Masters
Zero or One Cycle Arbitration Latency for the First Access of a Burst
Bus Lock Forwarding to Slaves
Master Number Forwarding to Slaves
Register Write Protection

SAMGS55 [DATASHEET] 319

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

15.3 Master/Slave Management

15.3.1 Matrix Masters

The Bus Matrix manages five masters. Each master can perform an access concurrently with others to an
available slave.

Each master has its own specifically-defined decoder. In order to simplify the addressing, all the masters have the
same decoding.

Table 15-1. List of Bus Matrix Masters

Master No. Name
0 Processor Instruction/Data Bus
1 Processor System Bus
2 Peripheral DMA Controller (PDC)
3 CRC Calculation Unit (CRCCU)
4 USB Host DMA

15.3.2 Matrix Slaves

The Bus Matrix manages five slaves. Each slave has its own arbiter, providing a different arbitration per slave

Table 15-2. List of Bus Matrix Slaves

Slave No. Name
0 Internal SRAM
1 Internal ROM
2 Internal Flash
3 Peripheral Bridge
4 USB Host Register

15.3.3 Master to Slave Access

Table 15-3 gives valid paths for master to slave access. The paths shown as “~" are forbidden or not wired, e.g.,
access from the processor I/D bus to internal SRAM.

Table 15-3. Master to Slave Access

Masters
0 1 2 3 4
Processor Processor
Slaves I/D Bus System Bus PDC CRCCU USB Host DMA
0 Internal SRAM - X X X X
1 Internal ROM X - X - -
2 Internal Flash X - X X -
3 Peripheral Bridge - X - -
4 | USB Host Register - X - - -
320 SAMGH55 [DATASHEET] /ItmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

15.4 Memory Mapping

The Bus Matrix provides one decoder for every AHB master interface. The decoder offers each AHB master
several memory mappings. Depending on the product, each memory area may be assigned to several slaves.
Thus it is possible to boot at the same address while using different AHB slaves.

15.5 Special Bus Granting Techniques

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access requests from
some masters, reducing latency at the first access of a burst or single transfer. The bus granting technique sets a
default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to its associated
default master. A slave can be associated with three kinds of default masters:

e No default master

e Last access master

e Fixed default master

15.5.1 No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from all masters. This is
suitable when the device is in low-power mode.

15.5.2 Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to the last master that
performed an access request.

15.5.3 Fixed Default Master

At the end of the current access, if no other request is pending, the slave connects to its fixed default master.
Unlike the last access master, the fixed master does not change unless the user modifies it by software (field
FIXED_DEFMSTR of the related MATRIX_SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the Slave
Configuration registers (MATRIX_SCFGx), one for each slave, used to set a default master for each slave.
MATRIX_SCFGx contain the fields DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field
selects the default master type (no default, last access master, fixed default master) whereas the 4-bit
FIXED_DEFMSTR field selects a fixed default master, provided that DEFMSTR_TYPE is set to fixed default
master. Refer to the Section 15.9 “Bus Matrix (MATRIX) User Interface”.

15.6 Arbitration

The Bus Matrix provides an arbitration technique that reduces latency when conflicting cases occur; for example,
when two or more masters try to access the same slave at the same time. One arbiter per AHB slave is provided,
so that each slave can be arbitrated differently.

The Bus Matrix provides the user with two types of arbitration for each slave:
e Round-robin arbitration (default)
e Fixed priority arbitration

Each algorithm may be complemented by selecting a default master configuration for each slave.
When a re-arbitration must be done, specific conditions apply. See Section 15.6.1 “Arbitration Rules”.

Atmel SAMGS55 [DATASHEET] 321

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

15.6.1 Arbitration Rules
Each arbiter has the ability to arbitrate between requests from two or more masters. To avoid burst breaking and to
provide the maximum throughput for slave interfaces, arbitration should take place during the following cycles:
e Idle cycles: When a slave is not connected to any master or is connected to a master which is not currently
accessing it.
e Single cycles: When a slave is currently doing a single access.
e End of Burst cycles: When the current cycle is the last cycle of a burst transfer. For a defined burst length,
predicted end of burst matches the size of the transfer but is managed differently for undefined length burst.
See Section 15.6.1.1 “Undefined Length Burst Arbitration”.

e Slot cycle limit: When the slot cycle counter has reached the limit value indicating that the current master
access is too long and must be broken. See Section 15.6.1.2 “Slot Cycle Limit Arbitration”.

15.6.1.1 Undefined Length Burst Arbitration
In order to prevent long AHB burst lengths that can lock the access to the slave for an excessive period of time, the
user can trigger the re-arbitration before the end of the incremental bursts. The re-arbitration period can be
selected from the following Undefined Length Burst Type (ULBT) possibilities:
e Unlimited: no predetermined end of burst is generated. This value enables 1 Kbyte burst lengths.
e 4-beat bursts: predetermined end of burst is generated at the end of each 4-beat boundary during INCR

transfer.

e 8-beat bursts: predetermined end of burst is generated at the end of each 8-beat boundary during INCR
transfer.

e 16-beat bursts: predetermined end of burst is generated at the end of each 16-beat boundary during INCR
transfer.

This selection is made through the ULBT field of the Master Configuration registers (MATRIX_MCFG).

15.6.1.2 Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a very slow slave (e.g.,
an external low speed memory). At the beginning of the burst access, a counter is loaded with the value previously
written in the SLOT_CYCLE field of the related MATRIX_SCFG and decreased at each clock cycle. When the
counter reaches zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half-word or word
transfer.

15.6.1.3 Round-Robin Arbitration

The Bus Matrix arbiters use the round-robin algorithm to dispatch the requests from different masters to the same
slave. If two or more masters make a request at the same time, the master with the lowest number is serviced first.
The others are then serviced in a round-robin manner.
Three round-robin algorithms are implemented:

e Round-robin arbitration without default master

e Round-robin arbitration with last access master

e Round-robin arbitration with fixed default master

Round-robin arbitration without default master

Round-robin arbitration without default master is the main algorithm used by Bus Matrix arbiters. Using this
algorithm, the Bus Matrix dispatches requests from different masters to the same slave in a pure round-robin
manner. At the end of the current access, if no other request is pending, the slave is disconnected from all
masters. This configuration incurs one latency cycle for the first access of a burst. Arbitration without default
master can be used for masters that perform significant bursts.

Round-robin arbitration with last access master

322 SAMGS55 [DATASHEET] /ltmel

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Round-robin arbitration with last access master is a biased round-robin algorithm used by Bus Matrix arbiters to
remove one latency cycle for the last master that accessed the slave. At the end of the current transfer, if no other
master request is pending, the slave remains connected to the last master that performs the access. Other non-
privileged masters still get one latency cycle if they attempt to access the same slave. This technique can be used
for masters that mainly perform single accesses.

Round-robin arbitration with fixed default master

Round-robin arbitration with fixed default master is an algorithm used by the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave remains connected
to its fixed default master. Every request attempted by this fixed default master will not cause any latency whereas
other non-privileged masters will still get one latency cycle. This technique can be used for masters that mainly
perform single accesses.

15.6.1.4 Fixed Priority Arbitration

The fixed priority algorithm is used by the Bus Matrix arbiters to dispatch the requests from different masters to the
same slave by using the fixed priority defined by the user. If requests from two or more masters are active at the
same time, the master with the highest priority number is serviced first. If requests from two or more master with
the same priority are active at the same time, the master with the highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority registers for slaves
(MATRIX_PRAS and MATRIX_PRBS).

15.7 System Configuration

The System I/O Configuration register (CCFG_SYSIO) configures I/O lines in system 1/O mode (such as JTAG,
ERASE, USB 1/Os, etc.) or as general-purpose I/O lines. Enabling or disabling the corresponding 1/O lines in
peripheral mode or in PIO mode (PIO_PER or PIO_PDR registers) in the PIO controller has no effect. However,
the direction (input or output), pull-up, pull-down and other mode control is still managed by the PI1O controller.

The USB Management register (CCFG_USBMR) configures the USB transceiver and selects the USB mode (Host
or Device).

The 12S Clock Source Selection register (CCFG_I2SCLKSEL) configures the 12S peripheral to provide a clock
source independent of the processor clock.

The Dynamic Clock Gating register (CCFG_DYNCKG) optimizes the power consumption for specific applications.
When enabled, the system bus circuitry is only driven by the clock when necessary (transfer in progress, access to
peripheral, etc.).

15.8 Register Write Protection

To prevent any single software error from corrupting MATRIX behavior, certain registers in the address space can
be write-protected by setting the WPEN bit in the “Bus Matrix Write Protection Mode Register” (MATRIX_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the “Bus Matrix Write Protection Status
Register” (MATRIX_WPSR) is set and the field WPVSRC indicates the register in which the write access has
been attempted.

The WPVS flag is reset by writing the MATRIX_WPMR with the appropriate access key WPKEY.
The following registers can be write-protected:

e “Bus Matrix Master Configuration Registers”

e “Bus Matrix Slave Configuration Registers”

e “Bus Matrix Priority Registers For Slaves”

e “System I/O Configuration Register”

Atmel SAMGS55 [DATASHEET] 323

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

15.9 Bus Matrix (MATRIX) User Interface

Table 15-4. Register Mapping
Offset Register Name Access Reset
0x0000 Master Configuration Register O MATRIX_MCFGO Read/Write 0x00000000
0x0004 Master Configuration Register 1 MATRIX_MCFG1 Read/Write 0x00000000
0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read/Writ 0x00000000
0x000C-0x003C | Reserved - - -
0x0040 Slave Configuration Register 0 MATRIX_SCFGO Read/Write 0x00010010
0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read/Write 0x00050010
0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read/Write 0x00000010
0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read/Write 0x00000010
0x0050-0x007C | Reserved - - -
0x0080 Priority Register A for Slave 0 MATRIX_PRASO Read/Write 0x00000000
0x0084 Reserved - - -
0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read/Write 0x00000000
0x008C Reserved - - -
0x0090 Priority Register A for Slave 2 MATRIX_PRAS?2 Read/Write 0x00000000
0x0094 Reserved - - -
0x0098 Priority Register A for Slave 3 MATRIX_PRAS3 Read/Write 0x00000000
0x009C Reserved - - -
0x0110 Reserved - - 0x22222224
0x0114 System 1/O Configuration Register CCFG_SYSIO Read/Write 0x0000_0C00
0x0118 Dynamic Clock Gating Register CCFG_DYNCKG Read/Write 0x00000007
0x011C I2S Clock Source Selection Register CCFG_I2SCLKSEL Read/Write 0x00000000
0x0120 USB Management Register CCFG_USBMR Read/Write 0x00000000
0x0124-0x01EO0 | Reserved - - -
Ox1E4 Write Protection Mode Register MATRIX_WPMR Read/Write 0x0
Ox1E8 Write Protection Status Register MATRIX_WPSR Read-only 0x0
O0x01EC-0x01FC | Reserved - - -

Note: 1. This default reset value must not be modified.

324 SAMGS55 [DATASHEET]

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

Atmel

15.9.1 Bus Matrix Master Configuration Registers

Name: MATRIX_MCFGXx [x = 0..2]

Address: 0x400E0200

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | ULBT |

This register can only be written if the WPEN bit is cleared in the Bus Matrix Write Protection Mode Register.

« ULBT: Undefined Length Burst Type
Value | Name Description

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be

0 UNLIMITED broken.

The undefined length burst is treated as a succession of single access allowing rearbitration at each beat

1 SINGLE of the INCR burst.
2 4 _BEAT The undefined length burst is split into a 4-beat bursts allowing rearbitration at each 4-beat burst end.
8 BEAT The undefined length burst is split into 8-beat bursts allowing rearbitration at each 8-beat burst end.
4 16_BEAT The undefined length burst is split into 16-beat bursts allowing rearbitration at each 16-beat burst end.
/ItmeL SAMG55 [DATASHEET] 325
Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

15.9.2 Bus Matrix Slave Configuration Registers

Name: MATRIX_SCFGx [x =0..3]

Address: 0x400E0240

Access: Read/Write
31 30 29 28 27 26 25 24

- T - T - T - - — T - —]
23 22 21 20 19 18 17 16

| - | - | - | FIXED_DEFMSTR | DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

-~ T - 1 - T - - — 1 - —]
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

This register can only be written if the WPEN bit is cleared in the Bus Matrix Write Protection Mode Register.

e SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst

When SLOT_CYCLE AHB clock cycles have elapsed since the last arbitration, a new arbitration takes place to let another
master access this slave. If another master is requesting the slave bus, then the current master burst is broken.

If SLOT_CYCLE = 0, the slot cycle limit feature is disabled and bursts always complete unless broken according to the
ULBT.

This limit has been placed in order to enforce arbitration so as to meet potential latency constraints of masters waiting for
slave access.

This limit must not be too small. Unreasonably small values break every burst and the Bus Matrix arbitrates without per-
forming any data transfer. The default maximum value is usually an optimal conservative choice.

In most cases, this feature is not needed and should be disabled for power saving.

See Section 15.6.1.2 “Slot Cycle Limit Arbitration” for details.

« DEFMSTR_TYPE: Default Master Type

Value | Name Description
At the end of current slave access, if no other master request is pending, the slave is disconnected from all
NO_DEFAUL
0 T masters.

This results in having a one cycle latency for the first access of a burst transfer or for a single access.

At the end of current slave access, if no other master request is pending, the slave stays connected to the
1 LAST last master having accessed it.

This results in not having the one cycle latency when the last master tries to access the slave again.

At the end of the current slave access, if no other master request is pending, the slave connects to the
2 FIXED fixed master the number that has been written in the FIXED_DEFMSTR field.

This results in not having the one cycle latency when the fixed master tries to access the slave again.

* FIXED_DEFMSTR: Fixed Default Master

The number of the default master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a master
which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

326 SAMGS55 [DATASHEET] /ltmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

15.9.3 Bus Matrix Priority Registers For Slaves

Name: MATRIX_PRASO..MATRIX_PRAS3

Address: 0x400E0280 [0], 0x400E0288 [1], 0x400E0290 [2], 0x400E0298 [3]

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | — | M3PR | — | — | M2PR |
7 6 5 4 3 2 1 0

| - | - | M1PR | - | - | MOPR |

This register can only be written if the WPEN bit is cleared in the Bus Matrix Write Protection Mode Register.

* MxPR: Master x Priority
Fixed priority of master x to access the selected slave. The higher the number, the higher the priority.

Atmel SAMGS55 [DATASHEET] 327

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

15.9.4 System I/O Configuration Register

Name: CCFG_SYSIO

Address: 0x400E0314

Access Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | - | SYSIO12 | SYSIO11 | SYSIO10 | - | - |
7 6 5 4 3 2 1 0

| SYSIO7 | SYSIO6 | SYSIO5 | SYSIO4 | - | — | - | - |

This register can only be written if the WPEN bit is cleared in the Bus Matrix Write Protection Mode Register.

e SYSIO4: PB4 or TDI Assignment
0: TDI function selected.
1: PB4 function selected.

* SYSIO5: PB5 or TDO/TRACESWO Assignment
0: TDO/TRACESWO function selected.
1: PB5 function selected.

» SYSIO6: PB6 or TMS/SWDIO Assignment
0: TMS/SWDIO function selected.
1: PB6 function selected.

e SYSIO7: PB7 or TCK/SWCLK Assignment
0: TCK/SWCLK function selected.
1: PB7 function selected.

* SYSIO10: PA21 or DM Assignment
0: DM function selected.
1: PA21 function selected.

» SYSIO11: PA22 or DP Assignment
0: DP function selected.
1: PA22 function selected.

* SYSIO12: PB12 or ERASE Assignment
0: ERASE function selected.
1: PB12 function selected.

328 SAMGS55 [DATASHEET] /ltmeL

Atmel-11289E-ATARM-SAM-G55G-SAM-G55J-Datasheet_30-Nov-15

15.9.5 Dynamic Clock Gating Register

Name: CCFG_DYNCKG

Address: 0x400E0318

Access Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | - | - | - | EFCCKG | BRIDCKG | MATCKG |

Note: Clearing all the bits provides the optimal energy reduction for the system bus circuitry.

* MATCKG: MATRIX Dynamic Clock Gating

0: MATRIX Dynamic Clock Gating Enabled. The MATRIX circuitry is driven by the clock only when a transfer to a periph-
eral is being performed. The energy consumption is optimized.

1: MATRIX Dynamic Clock Gating Disabled. The MATRIX circuitry is always driven by the clock in Active mode.

* BRIDCKG: Bridge Dynamic Clock Gating Enable

0: Bridge Dynamic Clock Gating Enable